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  THE AIM OF THIS PAPER 

 

 

Considering a real case study, we derive the capital requirement for premium risk for a single line 

of business through a partial internal model. 

 

We focus on the analysis of claim size distribution by exploring the performance of alternative 

methodologies based on the Minimum Distance Approach to fit pure, mixtures and spliced 

distributions. 

 

This topic is relevant in the actuarial literature in order to analyse the impact of a threshold to 

separate attritional and large claims in the identification of the claim size distribution to be used for 

risk capital evaluation (premium risk in Solvency II). 
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Aggregate Claim Amount and claim-size distribution 

• Both premium rating and capital requirement for Premium Risk are based on a proper valuation 
of the aggregate claim amount X for each LoB.  

 

• The aggregate claim amount is well described by a compound process as the sum of a random 
number K of random variable Zj : 

 

 

 
• Calibration of claim-size distribution (Zj) is a key point in most applications: 

– no standard parametric model seems to emerge as providing an acceptable fit to both small 
and large claims; 

 

– the identification of the threshold to separate attritional and large claims is a challenge 
native property of spliced/mixture distributions; 

 

– claims are usually posted in the case reserve nearby a “round” number  rather than its 
exact estimation leading to observe probability peaks in the empirical distribution; 

 

– it may be necessary to set up some constraints in parameter estimation (for example, the 
mean of empirical distribution equal to the mean of fitted distribution). That point is quite 
relevant for the due consistency with pricing analysis. 
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Insurance Claims Dataset (Property LoB) 

• Incurred amounts of claims (included ULAE and ALAE) of current year (2012) for a Property line 

of Business are reported in Figures (to consider only premium risk). 

• Z represents the claim size distribution to be analysed in order to quantify the capital requirement. 

• Many replicated values could be observed in empirical distribution (on log scale) 

• A similar analysis has been developed by using the well-known Fire Danish claims 

 
Main Characteristics 

Empirical Distribution 

N. Obs 33,701.00  

Mean 3,616.45  

St. Dev 44,029.28  

CV 12.17  

Skewness 80.46  

Kurtosis 8,203.58  

10th Percentile 312.17  

1st Quartile 661.49  

Median 1,215.32  

3rd Quartile 2,217.83  

99th Percentile          34,100.00  

99.9%        258,713.20  

99.99%    1,395,598.12  

Min                    1.00  

Max    5,339,663.91  



A Mixed Distribution 
• Replicated values may condition the overall fitting process because of high densities concentrated in specific domain. 

 

• Our proposal is to describe the distribution by using a mixed type distribution: 

– a discrete random variable with domain characterized by the peaks; 

– a continuous random variable (pure, mixtures or spliced distribution) for the remaining part. 

 

• A random variable Z is a mixed type distribution if the domain S can be partitioned into subsets D and C with the 

following properties: 

– D is countable and P(Z=z)>0 for  z D 

– P(Z=z)=0 for  z  C 

 

 

 

 

•   

Main Characteristics 

No Repl. Only Repl. 

N. Obs          18,370.00       15,331.00  

Mean            5,171.47         1,753.19  

St. Dev          59,493.41         3,753.37  

CV                  11.50                  2.14  

Skewness                  59.75               16.15  

Kurtosis            4,508.43             421.33  

1st Quartile                680.88             645.79  

Median            1,328.56         1,167.46  

3rd Quartile            2,634.57         1,760.90  

99.5th Perc.        103,232.74       22,947.58  

99.9%        447,647.33       41,734.37  

99.99%    3,065,504.32     124,813.14  

•  Thus, part of the distribution of  Z is concentrated at points in a discrete 

set D, while the rest of the distribution is continuously spread over C. 

z  C z  D 



ML vs MDA 

• Having chosen a distribution, Maximum Likelihood (ML) is the most common method to estimate 

parameters. 

ML aims at estimating parameters such that they include the maximum information coming from the 

sample. The estimates drive the shape of the theoretical distribution. 

 

• A viable alternative is represented by a Minimum Distance Approach (MDA). The original MD method 

(Parr (1985), Basu et al. (2011)) consists in solving the general unconstrained problem:  

 

 

 

 

 

 

 

• If it exists a θ ∈ Θ such that: 𝑑 𝐹𝑛 𝒛 , 𝐹𝑍 𝒛; 𝜃 = min
𝜃

𝑑 𝐹𝑛 𝒛 , 𝐹𝑌 𝒛; 𝜃 ; 𝜃 ∈ Θ  then θ   is the minimum 

distance estimator of 𝜃 

min
𝜃

𝑑 𝐹𝑛 𝒛 , 𝐹𝑍 𝒛; 𝜃   𝑍 ∈ 𝑅𝑍 

- 𝑧1, 𝑧2, … , 𝑧𝑛  is an i.i.d. random sample from a population with cdf  𝐹𝑍(𝒛; 𝜃) 

- 𝐹𝑛 𝒛 =
 𝐼 𝑧𝑖≤𝑧
𝑛
𝑖=1

𝑛
 is the empirical distribution (ecdf) 

- 𝑑(∙) is an appropriate distance function 

Examples of d 

𝑑 𝐹𝑛 𝒛 , 𝐹𝑍 𝒛; 𝜃 ≔

𝐶𝑣𝑀: 𝐹𝑛 𝒛 − 𝐹𝑍 𝒛; 𝜃 2𝑑𝑧

𝐾𝑆:  𝑠𝑢𝑝 𝐹𝑛 𝒛 − 𝐹𝑍 𝒛; 𝜃

𝐴𝐷: 
 𝐹𝑛 𝒛 − 𝐹𝑍 𝒛; 𝜃 2𝑑𝑧

𝐹𝑍 𝒛; 𝜃 1 − 𝐹𝑍 𝒛; 𝜃

 

For further distance measures see Titterington et al. (Table 4.5.1)   
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Univariate Distributions 

• Two classical univariate 

distributions (Pareto Type II and 

LogNormal) have been fitted to:  

• the empirical distribution (Z)  

• only the distribution without 

replications (Z  C)  

by using a classical MLE approach 

and original MD method with a 

AD loss function. 

 

• As shown by the q-q plots, both 

distributions assure a discrete 

fitting to the distribution with no 

replications only on the body (until 

95° percentile more or less) and a 

significant underestimation on the 

tails. 

 

  



• A two step strategy, based on a separate evaluation of attritional and large claims is a standard way to describe 

claim-size distribution: 

– Several distributions for modelling positive and right-skewed data are proposed in actuarial science (see 

Klugman et al. (2010)) 

– Extreme value theory and Generalized Pareto distributions are used to describe large claims exceeding a fixed 

threshold (see McNeil (1996), Embrechts et al. (1997), Gonzalez et al. (2013)). 
 

• Other approaches are based on mixtures and composite distributions: 

– Frigessi et al (2002) propose a weighted mixture model based on a GPD and on a light-tailed distribution 

– Cooray, Ananda (2005) combine LogNormal and  Pareto distributions by fixing the proportion of large claims 

– Teodorescu, Vernic (2007), Teodorescu, Panaitescu (2007), Vernic et al. (2009) provide different mixtures 

based on Exponential-Pareto, Weibull-Pareto and LogNormal-LogNormal. 

– Scollnik (2007) expands Cooray & Ananda paper by estimating the threshold directly by data and propose a 

LogNormal-GPD version. 

– Pigeon, Denuit (2011) extend the LogNormal-Pareto model by assuming a random threshold (Gamma or 

LogNormal distributed) 

– Nadarajah, Bakar (2012) try to improve fitting to Danish Data by using a composite distribution based on a 

LogNormal and various distributions for large claims. They assume the LogNormal-Burr as the best one for 

Danish Data. 

 

All papers use maximum log-likelihood (ML) approach to estimate parameters. 

Most of them use the public Fire Danish losses database to test the performance of their own 

method  
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Main approaches proposed by actuarial literature 



Mixture LogNormal-LogNormal 
ML vs MDA 

• A LogNormal-LogNormal 

Mixture have been applied by 

using ML and MDA (CvM Loss 

Function) 

 

 

 

• ML estimates has been computed 

by using the EM algorithm 

 

• ML provides an underestimation 

of a tail, while MDA assures a 

better fitting on extreme values 

and an overestimation on the 

body.  

 

𝐹𝑍 𝑧 = 𝜋𝐹𝑍1 𝑧 + 1 − 𝜋 𝐹𝑍2 𝑧   

with 0 < 𝜋 < 1 

Quantiles Empirical ML MDA(CvM) 

50%         1,329          1,315          1,484  

90%         5,975          6,263          9,341  

99%      51,988       60,027       49,310  

99.50%    103,233     116,006       84,244  

99.90%    447,647     370,824     450,898  

99.99%       3,065,504     1,181,437     2,495,439  
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• In literature a modern approach is based on the estimation of spliced distributions.  

The corresponding probability density function for a random variable Z with domain (c0,c2) is 

defined as: 

- 𝜋 is the weight 

- ci is the limit of the domains 

- 𝑓𝑍𝑖
∗  is a truncated probability density function  
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𝑓𝑍 𝑧 =  
𝜋𝑓𝑍1

∗ 𝑧                        𝑐0≤ 𝑧 < 𝑐1
1 − 𝜋 𝑓𝑍2

∗ 𝑧            𝑐1≤ 𝑧 < 𝑐2
  

𝑓𝑍𝑖
∗ 𝑧 =

𝑓𝑍𝑖 𝑧

 𝑓𝑍𝑖 𝑧 𝑑𝑧
𝑐𝑖
𝑐𝑖−1

 with  𝑖 = 1,2 

Spliced Distribution 

• This distribution allows to identify a threshold of separation between the two components. 

 

• Further conditions must be imposed if continuity and differentiability at the knots are needed 

(see Scollnick (2007) , Denuit et al. (2011),  Nadarajah, Bakar (2012)  for Composite 

distributions such as LogNormal-LogNormal and LogNormal-GPD) 



Spliced LogNormal-LogNormal 
ML vs MDA 

Quantiles Empirical ML MDA(CvM) 

50%         1,329             1,315                      1,325  

90%         5,975             6,208                      5,950  

99%      51,988           54,306                   52,348  

99.50%    103,233        100,832                   97,776  

99.90%    447,647        387,046                 395,419  

99.99%       3,065,504     2,021,142             2,357,818  

• A LogNormal-LogNormal 

Spliced Distribution have been 

applied by using ML and 

MDA (CvM Loss Function) 

 

• Both ML and MDA provides a 

better fitting (w.r.t. Mixtures) 

on the body with an 

underestimation of right tail. 
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• A generalization of the approach could be derived by assuming: 

  

   

 

 

where: q>0, 𝑝 ≥ 0 , w 𝑧𝑖 , 𝑝 > 0  

 

• If both q=2 and w 𝑧𝑖 , 𝑝 =
1

𝑛
, the approach leads to CvM loss distance.  

For q=1, w 𝑧𝑖 , 𝑝 =
1

𝑛
, we have the Wolfowitz distance. 

 

• We have investigated different choices of w 𝑧𝑖 , 𝑝 : 

– w 𝑧𝑖 , 𝑝 = 1 ∝ 𝑧𝑖  

– w 𝑧𝑖 , 𝑝 ∝ 𝑧𝑖
𝑝
 

– w 𝑧𝑖 , 𝑝 ∝ 𝑧𝑖  𝐼𝑧𝑖≤𝑧𝑡 + 𝑧𝑖
𝑝
 𝐼𝑧𝑖>𝑧𝑡 

 

• Further research will regard appropriate priors for w 𝑧𝑖 , 𝑝  under a bayesian framework. 

 

 

12 

   Minimum Distance Approach   

weighted Lq norm distances (WMDA(q,p)) 

min
𝜃

 𝐹𝑛 𝑧𝑖 − 𝐹𝑍 𝑧𝑖 , 𝜃
𝑞

𝑛

𝑖=1

w(𝑧𝑖 , 𝑝) 

Useful to control tail estimation for risk analysis 



Normalized weighted Lq norm distances 

• Since for different q, p, distances are not fully comparable, the choice of the best fitting for different 

combination of q, p will correspond to the solution with the minimum ratio between the distance and 

the corresponding maximum value. 

 

• For any q-norm and weighted q-norm, the following relations hold: 

– 𝑥𝑖 𝑞 =  𝑥𝑖
𝑞𝑛

𝑖=1
1/𝑞 ≤ 𝑛

𝑞
 max ( 𝑥𝑖 )    q ≥ 1 

– 𝑥𝑖 𝑞,𝑤 =  𝑥𝑖
𝑞𝑛

𝑖=1 𝑤𝑖
1/𝑞 =  𝑥𝑖 ∙ 𝑤𝑖

1/𝑞 𝑞𝑛
𝑖=1

1/𝑞
≤ 𝑛

𝑞
max 𝑥𝑖 ∙ 𝑤𝑖

1/𝑞      𝑤𝑖 ≥ 0 

 

 

• We derive then the statistics : 
 𝐹𝑛 𝑧𝑖 − 𝐹𝑍 𝑧𝑖 , 𝜃

𝑞 ∙𝑛
𝑖=1 𝑤 𝑧𝑖 , 𝑝

𝑛 max 𝐹𝑛 𝑧𝑖 − 𝐹𝑍 𝑧𝑖 , 𝜃 ∙ 𝑤 𝑧𝑖 , 𝑝
1
𝑞

𝑞 ≤ 1 

 

The lower is the ratio the better is the fitting  
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Diagnostics 

• We introduce further naive diagnostics, other than q-q plot in order to compare different models.  

 

• qq- residuals 

D=  𝑧𝑖 − 𝐹𝑍
−1 𝐹𝑛 𝑧𝑖 ;  𝜃 𝑝,𝑞

2𝑛
𝑖=1

1/2
 

 

i.e. the Euclidean distance between the data and the quantiles obtained from FZ where 𝜃 𝑝,𝑞 are the 

corresponding parameter estimates. 

 

• D is heavily influenced by extreme right values.  

Alternative indexes are: 

• The mean of the raw residuals 

• The estimate of the slope, 𝛽1,  of the constrained least squares regression line: 

 

𝑧𝑖(𝛼) = 𝛽0 + 𝛽1𝑧 𝑖(𝛼) + 𝑖          𝑠. 𝑡.  𝛽0= 0 

where 𝑧 𝑖(𝛼), 𝑧𝑖(𝛼) are the -th quantiles of the fitted model and of the empirical distribution, 

respectively.  

 

 

 

 
14 



ML vs WMDA 
Mixtures (LogNormal-LogNormal) 

 
• Weighted MDA have been 

initially applied to a 

LogNormal-LogNormal 

mixture 

 

• The best combination of 

(q,p) was equal to (2,1.7) 

and it allowed to derive a 

behaviour better than both 

ML and classical MDA. 

Quantiles Empirical ML MDA(CvM) WMDA 

50%         1,329                   1,315          1,484                    1,231  

90%   5,975                   6,263          9,341                    7,608  

99%      51,988                 60,027       49,310                  54,083  

99.50%    103,233               116,006       84,244                  95,407  

99.90%    447,647               370,824     450,898                452,217  

99.99%       3,065,504           1,181,437     2,495,439            2,975,952  

99.999% 4,983,665          2,198,212  5,402,755            5,299,414  
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ML vs WMDA 
(LogNormal-Pareto) 

 • Two alternative models (mixture and spliced) based on a LogNormal-Pareto II have been applied by 

using ML and WMDA 

Mixture 

LogNormal-Pareto 

Spliced 

LogNormal-Pareto 



ML vs WMDA 

Spliced 

LogNormal-LogNormal LogNormal-GPD 

• Two alternative spliced models (LogNormal-LogNormal) and (LogNormal-GPD) have been applied 

by using ML and WMDA 



A Comparison of the Models 

• A comparison of quantiles are reported in the upper part of the Table. 

• Coloured cells are the cases where the absolute differences between fitted and empirical quantiles 

are greater than 10%. 

• In the lower part of the table main diagnostics (in green best models) 



Claim-Size Distribution 

• Previous models have been fitted considering only the distribution without replications (ZC). 

• Full claim size distribution is then easily derived for each model by using the cdf of the mixed 

variable where: 

– for Z  C we use the fitted model 

– for Z  D we use the empirical distribution 

• Some examples of the pdf of claim-size distributions are reported in Figures. 



Premium Risk capital charge  

and Aggregate Claim Amount 

• A Collective Risk Simulation Model is here applied with the aim to quantify the required capital 

for premium risk of the LoB at  the end of year t. 

 

• We denote, for simplicity, with the r.v. 𝑋 𝑡+1 = 𝑋 𝑡+1
𝑝𝑎𝑖𝑑,𝐶𝑌

+ 𝐵𝐸 𝑡+1
𝐶𝑌  the amount of incurred claims 

(both paid and reserved) in the current year t+1.  

(NB: from now on the superscript tilde indicates random variables). 

Furthermore we assume that acquisition and management expenses are deterministic.   

 

• Following the collective approach, for each line of business the aggregate claims amount is given 

by a mixed compound process  

 

 

 

  

 


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where: 

- 𝐾 𝑡+1~𝑃𝑜𝑖(𝑛𝑡+1𝑞 ): the number of claims distribution (𝐾 𝑡+1) is 

the Poisson law, with a parameter n increasing year by year by the 

real growth rate g (nt+1=nt∙(1+g)) and with a structure variable 𝒒  

distributed as a Gamma with mean equal to 1 

- the claim size amounts Zj,t+1 are assumed i.i.d. and scaled by the 

claim inflation rate i: E(Zr
t+1)=(1+i)r ∙ E(Zr

t).  

We will compare the fitted models properly scaled. 
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Parameters 

Number of Claims 

𝑛𝑡+1 = 𝐸 𝐾 𝑡+1  34,375 

𝜍𝑞  6% 

Claim Size Distribution 

𝑚𝑡+1 = 𝐸 𝑍 𝑡+1  3,724.95 

𝑐𝑍 = 𝐶𝑜𝑉 𝑍 𝑡+1  12.17 

𝛾𝑍 = 𝑆𝑘𝑒𝑤 𝑍 𝑡+1  80.46 

Loadings 

λ𝑡+1 (safety loading) 5% 

𝑐𝑡+1 (exp. loading) 30% 

Gross Premiums 

𝐵𝑡+1     192,067,510.97  

𝐵𝑡     182,816,972.18  

As regard to parameter calibration:  

• The expected number of claims for next year 

considers a growth rate of roughly 2%, while 

the expected average claim amount has been 

scaled by a 3% inflation rate. 

• Variability coefficient and skewness of claim 

size distribution reported in Table are derived 

by the empirical distribution. We will use 

directly fitted models in aggregate claim 

amount evaluation. 

 

• Expected Gross Premiums of next year 𝐵𝑡+1 are 

derived as: 

𝐵𝑡+1 = 𝑛𝑡+1𝑚𝑡+1 ∙
1 + λ𝑡+1
1 − 𝑐𝑡+1

 

where: 

• 𝑛𝑡+1𝑚𝑡+1  is the risk premium 

• λ𝑡+1 is the safety loading coefficient (as a 

percentage of risk premium) 

• 𝑐𝑡+1 is the expenses loading coefficient (as a 

percentage of gross premium) 

For sake of simplicity that written premiums are 

assumed to be equal to earned premium 

 



• Capital requirement for premium risk has been obtained as a difference between the 99.5% quantile and the 

expected value of the aggregate claim amount distribution: 

        𝑆𝐶𝑅𝑡+1 = 𝐹𝑋 
−1 0.995 − 𝐸(𝑋 ) 

 

• We report both the amount of the capital requirement (𝑆𝐶𝑅𝑡+1) and the ratio between the capital 

requirement and initial gross premiums: 
𝑆𝐶𝑅𝑡+1

𝐵𝑡
.  

As a reference, the EU Solvency I requirement is around 16-20% of (net) written premiums for the overall 

risk of a non-life company 

 

• The aggregate claim amount distribution is derived by a compound process using alternative models for 

severity distribution fitted previously. 

Capital Requirement 

LogNormal Mixture  

LogN-LogN 

Mixture  

LogN-Pareto 

Spliced  

LogN-LogN 

Spliced  

LogN-GPD 

Method of 

Moments 

ML ML WMDA ML WMDA ML WMDA ML WMDA 

CoV(𝑋 ) 8.91% 6.13% 7.28% 9.11% 10.74% 8.37% 8.79% 8.96% 11.56% 9.86% 

𝛾(𝑋 ) 0.16 0.12 0.18 0.35 0.43 0.26 0.34 0.28  0.64 0.32 

𝐹𝑋 
−1 0.995  

(x 106) 
157.10 149.17 153.72 161.96 168.82 159.31 160.80 160.64 175.14 164.40 

𝑆𝐶𝑅𝑡+1 
(x 106) 

29.05 21.12 25.67  33.91  40.78 31.22 32.75  32.60  47.10  36.36  

𝑆𝐶𝑅𝑡+1

𝐵𝑡
 15.89% 11.59% 14.04% 18.55% 22.30% 17.11% 17.92% 17.83% 25.76% 19.89% 



• Final version of SF is still under review at the moment for 

the final calibration, but recent Quantitative Impact Studies 

(QIS5 and LTGA) provide the capital requirement for 

premium risk for a single LoB as: 

– 𝑆𝐶𝑅𝑡+1
𝑆𝐹,𝑄𝐼𝑆5

= 𝜌(𝜍)𝐵𝑡+1  where 𝜌(∙)  measures the 

difference between the 99.5 quantile and the mean of a 

LogNormal distribution with standard deviation 𝜍. 

– 𝑆𝐶𝑅𝑡+1
𝑆𝐹,𝐿𝑇𝐺𝐴 = 3𝜍𝐵𝑡+1. 

– In QIS5, 𝜍 can be a fixed value (market wide approach) or 

calibrated by using internal data and fixed methodologies 

(undertaking specific approaches).  

LTGA provided only a market wide approach, without any 

undertaking specific methodologies. 

– Volatility factors 𝜍 are equal to 10% in QIS5 and 8% in 

LTGA. 

 

A comparison  

between Internal Model and Standard Formula 

SF IM 

• We compare the SCR ratio for premium risk derived by either Internal Model (IM) and EU Solvency II Standard 

Formula (SF),  obtained as previously mentioned as the ratio between the capital requirement and initial gross 

premiums:  
𝑆𝐶𝑅𝑡+1

𝐵𝑡
 

23 

• LogNormal distribution underestimates SCR ratio 

• It is necessary to define how to select the alternative 

distribution to describe the insurer’s risk profile 



Conclusion and Further Research 

• A partial internal model has been developed in order to obtain capital requirement for 

premium risk.  

In particular, it has been analysed the effects of a different calibration of the severity 

distribution on the aggregate claim amount 

 

• WMDA seems to assure a better fit than ML due to its property to adapt the distribution to the 

data.  

 

• A good fit of extreme values is assured when weights are used. In some cases, the drawback is 

that it can produce an underestimation of the body of the distribution. 

 

• Further developments will regard an analysis of variability of estimators via bootstrap 

procedures,  a bayesian approach for weights. 
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