


Introduction

I Annuities are among the most important life insurance
products.

I The cost of annuities is determined by mathematical models
based on financial and demographic factors.

I For adequate risk management actions it becomes necessary
an effective uncertainty quantification of factor risks: which
risk has the biggest impact in determining the cost of
annuities? Are there completely irrelevant factors? Do they
interact?

I We present a comprehensive framework for Sensitivity
Analysis (SA) of annuities based at different scales.



Annuity model

The annuity model we consider is the standard whole-life
continuous annuity at age x

āx =

∫ ∞
0

tpxexp [−δt] dt, (1)

where δ represents the force of interest. The surviving probability

is given by tpx = exp
[
−
∫ t
0 µx+sds

]
, where µx is the force of

mortality at age x .



We assume that force of mortality (at time 0) at age x + u follows
the Gompertz law with parameters b and c

µ0x+u = exp[b + c(x + u)]. (2)

and that the mortality rates decrease by an exponential reduction
function of the form exp[−αt], so that

µtx+u = µ0x+ue
−αt . (3)

Under these assumptions, the probability of surviving t years at age
x (on a cohort basis) becomes

tpx = exp

[
−µ0x

(
e(c−α)t − 1

c − α

)]
. (4)



Consequently, the cost of annuity becomes the function

ā
(
µ0x , c , α, δ

)
=

∫ ∞
0

exp

[
−µ0x

(
e(c−α)t − 1

c − α

)]
e−δtdt (5)

with α < c .
A first very simple way to investigate the model is to evaluate it
when inputs vary one factor at a time from a base-case input
x0 =

(
µ0x , c , α, δ

)0
to a best case x+ =

(
µ0x , c , α, δ

)+
and to a

worst case x− =
(
µ0x , c , α, δ

)−
.



Local Sensitivity analysis: Finite Changes

In the general case, denote with g(x) :Rn → R the input-output
mapping of interest. Then, we can define the finite-change
sensitivity measures [Borgonovo and Plischke, 2016]

∆+
i y = g(x+i : x0−i )− g(x0) (6)

and

∆−i y = g(x−i : x0−i )− g(x0) (7)

where (x+i : x0−i ) and (x−i : x0−i ) denote the scenario in which the
i−th input is changed according to the best or worst case,
respectively, for i = 1, ..., n.



Finite change decomposition

For any multivariate mapping it is possible to decompose the finite
change ∆g = g(x1)− g(x0) across two different scenarios x0 and
x1 with the finite-change ANOVA expansion [Borgonovo, 2010]

∆g =
n∑

i=1

∆gi +
∑
i<j

∆gi ,j +
∑

i<j<k

∆gi ,j ,k + ...+ ∆g1,2,...,n, (8)

where the 2n − 1 finite change effects of increasing dimension are
recursively given by

∆gi = g(x1i : x0−i )− g(x0)

∆gi ,j = g(x1i ,j : x0−i ,j)−∆gi −∆gj − g(x0)

...

(9)

The effects ∆gi , i = 1, 2, ..., n, are called main effects and the
other higher order terms are the interaction effects.



Total finite-change indices

In general, given the decomposition (8), it is possible to define the
total effect of factor xi

∆T
i g = ∆gi+

n∑
j=1,j 6=i

∆gi ,j+
n∑

k,j=1,k 6=i 6=j

∆gi ,j ,k+...+∆g1,2,...,n (10)

which is a measure of the total impact of xi to the total change
∆g . Analogously, the total interaction effect is

∆I
i g = ∆T

i g −∆gi (11)

the difference between the total and the main effects of xi .





From Local to Global Sensitivity Analysis

I Local sensitivity methods provide insights only around the
base point x0.

I Inputs have typically a range and global measures become of
interest.

I To explore the whole input space one can consider a series of
two scenarios sampled across all the input space and then
aggregate local importance measures.

I Method of Elementary Effects [Morris, 1991; Campolongo et
al., 2011; Borgonovo and Rabitti, ?].



Input space

Parameter Estimated value Lower range Upper range

µ060 0.00552155 0.005 0.006

c 0.085 0.08 0.09

α - -0.07 0.07

δ - 0% 10%

Parameter values and ranges from [Haberman et al., 2011]. They
are estimated by regression using the Continuous Mortality
Investigation (1991-1994) mortality table for female pensioners at
ages 60 and over. [Haberman et al., 2011] introduce ranges of
variation for the parameters c , α and δ. We have chosen the range
of µ060.



Scatterplots with N = 10000



Scatterplots with N = 10000



GSA: Pearson correlation coefficient

[Pearson, 1905] defines the correlation coefficient

η2i =
Cov(Y ,Xi )

σY σXi

(12)

where σXi
is the standard deviation of the input Xi , i = 1, ..., n.

This index measures the linear dependence between the two
variables Y and Xi .



GSA: Functional ANOVA expansion

[Hoeffding, 1948; Efron and Stein, 1981] prove that the
multivariate mapping g can be decomposed as

g(x) = g0 +
n∑

i=1

gi (xi ) +
∑
i<j

gi ,j(xi , xj)...+ g1,2,...,n(x1, x2, ..., xn)

(13)
where

g0 =
∫
g(x)dµX

gi (xi ) =
∫
g(x)dµX−i

− g0

gi ,j(xi , xj) =
∫
g(x)dµX−i,j

− gi (xi )− gj(xj)− g0

...

. (14)



GSA: Sobol’ indices - 1

Under independence the terms gz(xz), z ⊆ {1, ..., n}, are
orthogonal.
The output variance σ2Y can be decomposed as

σ2Y =
n∑

i=1

σ2i +
∑
i<j

σ2i ,j ...+ σ21,2,...,n (15)

where σ2z = V [gz(xz)] is the variance of the group of variables
indexed by z ⊆ {1, ..., n}. Every term can be interpreted as

σ2z = VarXz

[
EX−z [Y |Xz ]

]
. (16)

The index (16) has been used by [Bruno et al. 2000; Karabey et
al. 2014] to study the risk of a portfolio of life insurance policies
with mortality and interest rate risks.



GSA: Sobol’ indices - 2

If we normalize by the total variance, one finds

n∑
i=1

Si +
∑
i<j

Si ,j ...+ S1,2,...,n = 1, (17)

where the generic term is the sensitivity index of [Sobol’, 1993] and
is given by

Sz =
σ2z
σ2Y
. (18)

Every term Sz measures the proportion of the output variance
which the inputs xz contribute to.



Total Sobol’ effects

[Homma and Saltelli, 1996] define the total effect of the inputs xz
as

ST
z =

∑
u∩z 6=∅

Su. (19)

Itis a measure of the total impact of inputs in z .
The sensitivity measures Sz and ST

z can shed light on the
importance of the inputs z in explaining the output variability.



Moment-independent sensitivity methods

[Baucells and Borgonovo, 2013] consider the sensitivity index βKSi

βKSi = E

[
sup
y
|FY(y)− FY|Xi

(y)|
]
. (20)

Suppose now that the output admits a density fY(y). [Borgonovo,
2007] defines the δBOi sensitivity measure

δBOi =
1

2
E

[∫
|fY(y)− fY|Xi

(y)|dy
]
. (21)

These sensitivity measures are invariant under monotonic
transformations.



Figure 1: Sensitivity indices estimated from N = 10000 Monte Carlo runs.





SA of annuities with dependent financial and mortality
factors

[Deelstra et al., 2016; Dacorogna and Apicella, 2016] consider the
role of dependence between mortality and interest rate in actuarial
valuations.
However, in such case there are some theoretical complications to
calculate the variance-based indices [Li and Rabitz, 2017].
Nonetheless, moment-independent measures can still be computed.



Figure 2: The empirical density of the annuity model for independent
(blue line), positively correlated (red line) and negatively correlated
inputs (yellow line).



Figure 3: Comparison of moment-independent sensitivity measures in
absence of correlation (blue bars) and with positive (yellow bars) and
negative correlation (golden bars) of 0.6 between α and δ. The Monte
Carlo runs are N = 10000.



Conclusions

I In the past it has been debated whether financial risk
connected to life annuities is more important than the
mortality risk.

I We have proposed the comprehensive framework of
[Borgonovo, Plischke and Rabitti, submitted] to investigate
the importance of these factors in determining the cost of
annuities.

I Our results in the global case are in line with those of
[Karabey et al., 2014]. Moreover, we also provide insights on
the local and global scale with dependence.

I Future research: SA for stochastic simulation for portfolios of
variable annuities.


