Stochastic Ordering of the Risks Affecting the Social Security Coverage in Africa

Şule Şahin^{1,2}, Ezgi Nevruz² & Olivier Menoukeu Pamen¹

¹ University of Liverpool, UK
 ² Hacettepe University, Turkey

21-24 May, 2019

Outline

Introduction

- 8 Risks affecting the social security coverage
- Ountries

Methodology

- Risk and risk measures
- Stochastic ordering
- Stochastic prioritisation

Problem setting

• • = • • = •

Introduction

- The population covered by at least one social protection benefit is 45.2% worldwide, while this rate is 17.8% in Africa [1]
- Factors such as limited formal economy, unemployment and high rates of inflation
- Low productivity, weak governance mechanisms, administrative problems in some existing social security schemes pose serious challenges to efficient delivery and undermine trust and public support for social security
- **High** levels of **unemployment** and **underemployment**, as well as the inadequacy of current labour and social protection standards, prevent the delivery of social protection in many African countries [2].

イロト イポト イヨト イヨト 二日

Introduction

- Based on ILO's estimates, 29% of the global population are covered by comprehensive social security systems - full range of benefits, from child and family benefits to old-age pensions.
- Yet the large majority 71% are not, or are only partially, protected.
- Coverage gaps are associated with a significant underinvestment in social protection, particularly in Africa, Asia and the Arab States [1].

- 4 回 ト 4 ヨ ト 4 ヨ ト

Introduction

- Social security coverage is a top global priority
- Universal social security coverage is achievable and affordable for countries at different levels of economic development.
- 87% of the African countries, which are the members of International Social Security Association (ISSA), considers the extension of social security coverage to be a **priority challenge**.
- Coverage can be extended through a combination of voluntary and mandatory contribution schemes, subsidised and tax-financed programs [3].

- 4 回 ト 4 三 ト 4 三 ト

Risks Affecting Social Security Coverage

- The voluntary contribution scheme in Cameroon, which extends social security coverage to the informal sector, and community-based health insurance schemes for informal employment in Rwanda are the examples of successful implementations.
- Risks affecting the social security coverage are closely related with the social and economic conditions of the countries and they are characterised by different socio-economic indices

(人間) トイヨト イヨト

Risks Affecting Social Security Coverage

- Human Development Index (HDI) as a composite index of life expectancy, education and gross national income per capita
- Gender Development Index (GDI) based on the sex-disaggregated HDI defined as a ratio of the female to the male HDI;
- Gender Inequality Index (GII), which reflects gender-based inequalities in three dimensions reproductive health, empowerment and economic activity.

イロト イポト イヨト イヨト 二日

Risks Affecting Social Security Coverage

- There is a strong relation between the key indicators of social security and the socio-economic indices [4, 5].
- We propose that this relation can be represented by stochastic risk prioritisation.

Aim: to analyse those risks defined as a **composite indicator** for selected **African countries** by using **stochastic ordering** within the framework of **partial order theory (POT)**. Considering the relation between the social security coverage and the HDI, GDI and GII we will investigate the stochastic dominance of the indicators as random variables.

< ロト < 同ト < ヨト < ヨト

Countries

- Three sub-Saharan African countries namely, Cameroon, Ghana and Rwanda.
 - geographic locations (centre, west and east sub-Sahara)
 - similar **poverty reduction strategies** that mainly addressed the social sectors such as health and education during early 2000s [6]
 - rankings in the socio-economic indices [7].
- Due to the effect of the **geography-related risks** on prioritisation, focusing on three different locations constitutes a good sample to represent sub-Saharan Africa
- These three countries have both **similarities and differences**, which will enable us to provide critical comments and compare our prioritisation results
- Collaboration with African Institute for Mathematical Sciences (AIMS) in all three countries

イロト 不得下 イヨト イヨト 二日

Methodology - Risk and Risk Measures

- **Risk** a non-negative random variable which can be preferable to another for two reasons:
 - the other risk is *larger*
 - it is thicker-tailed (riskier) probability of large values is larger
- Risk measures assign a real number to a risk, which is described by a random variable $X : \Omega \to \mathbb{R}$
- X a potential loss but we allow X to assume negative values, which means that a gain occurs
- Axioms for risk measures
 - monotonocity: if X ≤ Y then ρ(X) ≤ ρ(Y) the larger loss is more risky
 - **2** convexity: $\rho(\lambda X + (1 \lambda)Y) \le \lambda \rho(X) + (1 \lambda)\rho(Y)$ for all $\lambda \in [0, 1]$ - diversification

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ = ● ● ●

Methodology - Risk and Risk Measures

Various measures of risks

• Value-at-risk at probability level α is the α -quantile of X:

$$VaR_{\alpha}(X) = F_X^{-1}(\alpha) = \inf\{x \in [0,\infty) : F_X(x) \ge \alpha\}$$

 Conditional Tail Expectation at probability level α when X is continuous:

$$CTE_{\alpha}(X) = E(X|X > VaR_{\alpha}(X))$$

- 4 同 6 4 日 6 4 日 6

Partial Order Theory (POT)

allows one to compare and order objects, characterised by multiple indicators, when there is an acceptable binary relation between two objects.

- multiple indicators \rightarrow an index
- finding basic indicators and the weights

Consider a set $\mathcal{X} = (X_1, X_2, X_3, ...)$ of objects. To each object $X_i, i \ge 1$, we associate real-valued indicators $(I_i^1, I_i^2, I_i^3, ..., I_i^k)$ where k is an integer.

• An object X_i is intrinsicly better than X_j and we note $X_i \ge X_j$ iff $I_i^k \ge I_j^k$ for all k

イロト 不得 トイヨト イヨト 二日

• not every pair of elements needs to be comparable (ambiguity) \rightarrow partial order \rightarrow introduce the indicator as an index

$$\gamma(X) = \gamma(I^1, \ldots, I^k)$$

to solve this ambiguity

 a simple example of γ is given by the following linear combination of the indicators:

$$\gamma(I^1,\ldots,I^k)=w_1I^1+\ldots+w_kI^k,$$

where w_i , $1 \le i \le k$ is a number and $\sum_{i=1}^k w_i = 1$.

イロト (周) (ヨ) (ヨ) (ヨ) () ()

The index γ defines the linear ordering on the set of **objects** \mathcal{X} by:

$$X_i \leq_{\gamma} X_j \text{ iff } \gamma(X_i) \leq \gamma(X_j),$$
 (1)

that is, it defines a stochastic ordering.

- the index must be monotone increasing for each variable individually
- if the derivative of the index $\gamma(I^1, \ldots, I^k)$ exist, then $\frac{\gamma}{I_j} \ge 0, \forall j$ must be true
- if the index $\gamma(I^1, ..., I^k)$ is **linear**, i.e. $\gamma = w_1 I^1 + ... + w_k I^k$ then $w_j \ge 0, \forall j$

イロト (周) (ヨ) (ヨ) (ヨ) () ()

Axioms for the Partial ordering of DFs

Consider that $F_{X_1}(s)$, $F_{X_2}(s)$ and $F_{X_3}(s)$ with $s \ge 0$ are dfs of rvs X_1, X_2 and X_3 , respectively. The binary relation \le is a partial order on a set $P = \{F_{X_1}, F_{X_2}, F_{X_3}, \ldots\}$ if the axioms of POT are fulfilled as follows:

- **Reflexivity:** $F_{X_1}(s) \leq F_{X_1}(s)$ for all $F_{X_1} \in P$ with $\forall s \geq 0$.
- **Transitivity:** $F_{X_1}(s) \leq F_{X_2}(s)$ and $F_{X_2}(s) \leq F_{X_3}(s)$ implies $F_{X_1}(s) \leq F_{X_3}(s)$ for all $s \geq 0$.
- **O Antisymmetry:** $F_{X_1}(s) \le F_{X_2}(s)$ and $F_{X_2}(s) \le F_{X_1}(s)$ implies $F_{X_1} \equiv F_{X_2}(F_{X_1}(s) = F_{X_2}(s), \ \forall s \ge 0).$

Assuming all mentioned random variables have a finite mean and are defined on a common probability space (Ω, \mathcal{F}, P)

- $X \leq_{st} Y$, if $E[f(X)] \leq E[f(Y)]$ for all increasing f
- $\ \, {\bf 0} \ \ \, X{\leq_{{\bf c}{\bf x}}}Y, \ \, if \ \, E[f(X)]\leq E[f(Y)] \ \, for \ \, all \ \, convex \ f \ \ \,$
- $X \leq_{icx} Y$, if $E[f(X)] \leq E[f(Y)]$ for all increasing convex f
- $X \leq_{icv} Y$, if $E[f(X)] \leq E[f(Y)]$ for all increasing concave f
 - the ordering \leq_{st} is called usual stochastic ordering or first order stochastic dominance (FSD)
 - i.e. any rational decision maker prefers the loss X to the loss Y

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ = ● ● ●

For any random variable X we denote by

$$F_X(t) := P(X \le t), \ t \in \mathbb{R}$$

the distribution function and by

$$q_X(\alpha) := \inf\{x \in \mathbb{R} | P(X \le x) \ge \alpha\}, \ 0 < \alpha < 1,$$

the **quantile function** which is the generalised inverse of the distribution function.

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Theorem: For random variables X and Y with distribution functions F_X and F_Y the following statements are equivalent:

- $X <_{ct} Y$
- There is a probability space $(\Omega', \mathcal{F}', P')$ and random variables X' and Y' on it with the distribution functions F_X and F_Y such that $X'(w') \leq Y'(w')$ for all $w' \in \Omega'$
- $F_X(t) \ge F_Y(t)$ for all t
- $q_X(\alpha) \leq q_Y(\alpha)$ for all $\alpha \in (0,1)$

・ 同 ト ・ ヨ ト ・ ヨ ト

Stop-loss order

The ordering \leq_{icx} is also known as **stop-loss order** (second order **stochastic dominance** (SSD)) in actuarial sciences since \leq_{icx} holds iff the corresponding stop-loss transforms are ordered. The stop-loss transform π_X of a random variable X is defined as

$$\pi_X(t) = E(X-t)_+ = E(\max\{X-t,0\}) = \int_t^\infty (1-F_X(s)) ds, \,\, t \in \mathbb{R}$$

In decision theory $\mathbf{X} \leq_{icx} \mathbf{Y}$ has the meaning that any risk averse decision maker prefers the loss X to the loss Y.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ = ● ● ●

Methodology - Stochastic Prioritisation

Definition

There exists a non-decreasing real-valued utility function u on \mathbb{R} with u(0) = 0 s.t.

 $X \leq Y \Leftrightarrow \mathbb{E}[u(X)] \leq \mathbb{E}[u(Y)]; \ X, Y \geq 0$

where the expected utility is

$$\mathbb{E}[u(X)] = \int_0^\infty S_X(t) \,\mathrm{d}u(t) = \int_0^1 u[S_X^{-1}(q)] \,\mathrm{d}q$$

(人間) トイヨト イヨト 三日

Problem Setting - Risks Affecting the Social Security Coverage

Figure: Stochastic prioritisation of the risks affecting the social security coverage

•		-		
- 510	0	5	۱h	1 m
çu	~	ΨĽ		

3

(a)

Problem Setting - Common Indicators

Indicator no	Indicator name
I^1	life expectancy at birth
I^2	infant mortality rates
1 ³	life expectancy at age 65
<i>I</i> ⁴	unemployment
l ⁵	income
1 ⁶	educational attainment
I ⁷	government expenditure on education
1 ⁸	consumer price index
1 ⁹	interest rates
/ ¹⁰	labour force & labour force participation
:	:

イロト イ部ト イヨト イヨト 二日

What is next?

- Determining the common indicators
- Finding the historical data for each indicator and objects
- Dependency between the indicators and objects
- Constructing composite indicators
- Choosing the best risk measure to compare/order/prioritise the objects
- Proposing relevant **social security reforms** to target the prioritised risks

(4個) (4回) (4回) (日)

References

World Social Protection Report 2017-2019.

Technical report, International Labour Office, 2017. Available at https://www.ilo.org/global/publications/books/WCMS_604882/lang--en/index.htm.

Social Protection in Africa.

Technical report, International Labour Office, 2019. Available at https://www.ilo.org/addisababa/areas-of-work/social-protection/lang--en/index.htm.

Technical report, International Social Security Association, **2016**. Available at http://praha.vupsv.cz/fulltext/ul_2036.pdf.

G. Ranis, F. Stewart, and E. Samman.

Human development: Beyond the human development index. *Journal of Human Development*, 7(3):323–358, **2006**.

M. Samson.

Good practice review: Extending social security coverage in Africa, ISSA Project on "Examining the existing knowledge on social security coverage extension" Working Paper, No. 2, 2009. Economic Policy Research Institute.

N. Fold and M.P. Prowse.

Agricultural transformation in Ghana, Cameroon, Rwanda and Tanzania: State of the art report for RurbanAfrica [Project No. 290732: RurbanAfrica-African Rural-City Connections, 2012-2016.-SP1-Cooperation, FP7-SSH-2011-2, Deliverable No. 1.1], 2013.

Department of Geosciences and Natural Resource Management, University of Copenhagen.

Technical report, United Nations Development Programme, 2018. Available at

< ロト < 同ト < ヨト < ヨト