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Introduction

� Mortality models have attracted research attention over recent years
because of the significance of longevity risks (The Joint Forum (2013))
and capital requirements for insurers (Barrieu et al. (2012)).

� Continuous time mortality models (Milevsky and Promislow (2001), Dahl
(2004), Cairns et al. (2006a), Blackburn and Sherris (2013)) have
received less attention than discrete time mortality models (Lee and
Carter (1992), Cairns et al. (2009), Cairns et al. (2006b), Renshaw and
Haberman (2006)).

� Continuous time affine cohort mortality models have attracted more
recent research (Dahl and Møller (2006), Biffis (2005), Luciano et al.
(2008), Schrager (2006), Jevtic et al. (2013), Xu et al. (2015), Chang
and Sherris (2018)).
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Research motivation

� We propose an affine mortality model based on the Arbitrage-Free
Nelson-Siegel (AFNS) yield curve model (Christensen et al. (2011)) with
identifiable factors of level, slope and curvature of the mortality curve.

� We assess a number of continuous-time affine cohort mortality models
(Blackburn-Sherris dependent and independent factor mortality models,
AFNS independent and dependent factor mortality models, CIR mortality
model).

� We investigate the impact of incorporating factor dependence to capture
age correlations for the models.

� We capture cohort effects directly using age-cohort data to calibrate and
assess the model survival curves fit and forecasting performance.
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Affine Mortality Models

� The dynamics of the latent factors Xt are given by the following system of
stochastic differential equations (SDEs) under the risk-neutral measure Q
(Duffie and Kan, 1996; Christensen et al., 2011):

dXt = KQ
[
θQ − Xt

]
dt + ΣD (Xt , t) dW Q

t , (1)

where KQ ∈ Rn×n is the mean reversion matrix, θQ ∈ Rn is the long-term
mean, Σ ∈ Rn×n is the volatility matrix, W Q

t ∈ Rn is a standard Brownian
motion, and D (Xt , t) is a diagonal matrix with the ith diagonal entry as√
αi (t) + β i

1 (t) x1t + . . . + β i
n (t) xnt . α and β are bounded continuous

functions.
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Affine Mortality Models

� Under these dynamics the risk-neutral survival probabilities for any age x
from time t to time T can be represented as (Blackburn and Sherris,
2013):

S (t,T ) = exp
(
B (t,T )

′
Xt + A (t,T )

)
, (2)

where B (t,T ) and A (t,T ) are the solutions to the following system of
ordinary differential equations (ODEs):

dB (t,T )

dt
= ρ1 +

(
KQ
)′
B (t,T ) , (3)

dA (t,T )

dt
= −B (t,T )

′
KQθQ − 1

2

3∑
j=1

(
Σ

′
B (t,T )B (t,T )

′
Σ
)
j,j
, (4)

with boundary conditions B (T ,T ) = A (T ,T ) = 0.5



Multi-Factor Affine Cohort Mortality Models

� The form of risk premium is (Duffee, 2002):

Λt =

{
λ0 + λ1Xt , models with Gaussian processes;

D (Xt , t)λ0, the CIR model,
(5)

where Λt ∈ Rn×1, λ0 ∈ Rn×1 and λ1 ∈ Rn×n.

� With these assumptions, the SDEs for factors under the measure P can
be written as:

dXt =

{
KP
[
θP − Xt

]
dt + ΣdW P

t , models with Gaussian processes;

KP
[
θP − Xt

]
dt + ΣD (Xt , t) dW P

t , the CIR model,

(6)
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Multi-Factor Affine Cohort Mortality Models

The dynamics of the factors in each model that we will estimate from
historical mortality data is:

� The independent Blackburn-Sherris model (Blackburn and Sherris, 2013)

 dX1
t

dX2
t

dX3
t

 = −

 δ11 0 0
0 δ22 0
0 0 δ33

 X 1
t

X 2
t

X 3
t

 dt +

 σ11 0 0
0 σ22 0
0 0 σ33


 dW

1,Q
t

dW
2,Q
t

dW
3,Q
t

 . (7)

� The independent AFNS model (Christensen et al., 2011) The dynamics of the factors under the Q-measure are given by:

 dLt
dSt
dCt

 = −

 0 0 0
0 δ −δ
0 0 δ

 Lt
St
Ct

 dt +

 σ11 0 0
0 σ22 0
0 0 σ33


 dW

1,Q
t

dW
2,Q
t

dW
3,Q
t

 . (8)

� The dependent Blackburn-Sherris model

 dX 1
t

dX 2
t

dX 3
t

 = −

 kP11 0 0

0 kP22 0

0 0 kP33


 X 1

t
X 2
t

X 3
t

 dt +

 σ11 0 0
σ21 σ22 0
σ31 σ32 σ33


 dW

1,P
t

dW
2,P
t

dW
3,P
t

 . (9)
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Multi-Factor Affine Cohort Mortality Models

� The dependent AFNS model

 dX 1
t

dX 2
t

dX 3
t

 = −

 δ11 0 0
δ21 δ22 0
δ31 δ32 δ33

 X 1
t

X 2
t

X 3
t

 dt +

 σ11 0 0
σ21 σ22 0
σ31 σ32 σ33


 dW

1,Q
t

dW
2,Q
t

dW
3,Q
t

 . (10)

� The CIR model

 dX 1
t

dX 2
t

dX 3
t

 = −

 δ11 0 0
0 δ22 0
0 0 δ33



 θQ1

θQ2
θQ3

−
 X 1

t
X 2
t

X 3
t


 dt

+

 σ11 0 0
0 σ22 0
0 0 σ33




√
X 1
t 0 0

0
√

X 2
t 0

0 0
√
X 3
t


 dW

1,Q
t

dW
2,Q
t

dW
3,Q
t

 .
(11)
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Multi-Factor Affine Cohort Mortality Models

τ = T − t times µ̄i (x ; t,T ) is given by −[B (t,T )
′
Xt + A (t,T )] where

B (t,T ), the factor loadings, and A (t,T ) have explicit expressions.

� The independent Blackburn-Sherris model (Blackburn and Sherris, 2013)

B j (t,T ) = −1− e−δjj(T−t)

δjj
, j = 1, 2, 3, (12)

A (t,T ) =
1

2

3∑
j=1

σ2jj
δ3jj

[
1

2

(
1− e−2δjj(T−t)

)
− 2

(
1− e−δjj(T−t)

)
+ δjj (T − t)

]
.

(13)
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Multi-Factor Affine Cohort Mortality Models

� The independent AFNS model (Christensen et al., 2011)

B1 (t,T ) = − (T − t) , B2 (t,T ) = −1− e−δ(T−t)

δ
,

B3 (t,T ) = (T − t) e−δ(T−t) − 1− e−δ(T−t)

δ
,

(14)

A (t,T )

T − t
= σ211

(T − t)

6
+ σ222

[
1

2δ2
− 1

δ3
1− e−δ(T−t)

T − t
+

1

4δ3
1− e−2δ(T−t)

T − t

]
+

σ233

[
1

2δ2
+

1

δ2
e−δ(T−t) − 1

4δ
(T − t) e−2δ(T−t) − 3

4δ2
e−2δ(T−t)

− 2

δ3
1− e−δ(T−t)

T − t
+

5

8δ3
1− e−2δ(T−t)

T − t

]
.

(15)
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Mortality Data

� US mortality age-cohort data from the Human Mortality Database (2017)
(HMD) to calibrate and compare the mortality models.

� Mortality data of males from ages 50 to 100 for the cohorts born from 1883 to 1915.

� Historical survival probability, S i (x ; t,T ), and the historical average
forces of mortality µ̄i (x ; t,T ) over the period τ = T − t for each cohort i
aged x at time t from the data, using:

S i (x ; t,T ) =
T−t∏
s=1

[
1− qi (x + s − 1, t + s − 1)

]
, (16)

µ̄i (x ; t,T ) = − 1

T − t
log
[
S i (x ; t,T )

]
, (17)

where qi (x , t) is the one year death probability for an individual aged x at time t in
cohort i . 11



Mortality Data
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Figure 1: Average Force of Mortality
for Males Born from 1883 to 1915

Figure 2: Fractions (%) of Variance
Explained by Each of the First 7
Principal Components
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Model Goodness of Fit

Table 1: Comparison of Affine Mortality Models

The Blackburn-Sherris Model The AFNS Model The CIR Model

Independent-

Factor

Dependent-

Factor

Independent-

Factor

Dependent-

Factor

Log Likelihood 9896.419 9938.696 9665.801 9887.878 10045.70
RMSE 0.00250 7.601e-04 6.856e-04 9.160e-04 5.227e-04
No. of

Parameteres 12 18 10 13 18
AIC -19570.837 -19643.392 -19113.602 -19551.757 -19857.40
BIC -18968.292 -19008.277 -18521.914 -18943.783 -19222.29

Probability of

Negative

Mortality 0.02700 1.011e-32 1.722e-31 4.34e-14 -
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Model Residual Analysis
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(e) The CIR Model

Figure 3: Residuals of Affine Mortality Models
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MAPE of Affine Mortality Models
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MAPE of Affine Mortality Models
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Figure 5: The CIR Model, the Dependent Blackburn-Sherris Model and the Independent
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Forecast RMSE

Table 2: RMSE by Comparing the Actual and Best-Estimate Survival Probabilities of the
1916 Cohort

The Blackburn-Sherris Model The AFNS Model The CIR Model

Independent Dependent Independent Dependent

RMSE 0.03197 0.00726 0.00668 0.00754 0.01835
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Forecast RMSE
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Figure 6: Actual and Best-Estimate

Survival Probabilities of the 1916 Cohort
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Summary and Conclusions

� We introduce an AFNS mortality model with interpretable latent
stochastic factors for level, slope and curvature of the survival curve.

� Incorporating dependence in the the Blackburn-Sherris mortality model
improves in-sample model fit and out-of-sample forecasting performance.

� The CIR mortality model has the best in-sample model fit reflecting the
more realistic assumption of Gamma-distributed mortality rates.

� Independent-factor AFNS mortality model is parsimonious, can better
capture the variation in cohort mortality rates in US data, a better fit at
older ages than the independent-factor Blackburn-Sherris model, better
predictive performance. Negative mortality rates have very low probability.
Intuitive factor interpretation and well suited for financial and insurance
applications. 19
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