Capital Management Strategies for a Life Company Solvency Ratio projection and anti-cyclical mechanisms

Rome, 6th of June 2013

Is the evaluation of effective Solvency Ratio sufficient for managing the business?

Assicurazioni Generali Group Investor Day

Key drivers for projected Solvency position in different Solvency frameworks

Guarantee profile	4		(
Liability duration	-	-	•	C
Mortality profile	4	0	÷	
Policyholder behaviour	4	-	((
Reserve amount	()	((
Asset Allocation	4	-	((

Under Solvency I perspective:

→ <u>capital management and consequently optimization</u> can be performed separately on assets and liabilities, without considering any potential interaction between them as Solvency I is a static measure based on static figures

 \rightarrow <u>capital optimization</u> is mainly driven by the potential following actions:

Action	Capital Release	Capital generation
Reinsurance	(_
Debt issuance		()
Capital injection (by SH)		()
VIF Monetisazion		()
CAT Bond	(e

Solvency 2 – Capital optimization

Under Solvency 2 perspective (*but not only*), <u>Capital management and consequently</u> <u>optimization</u> can be performed on assets and liabilities, considering both the <u>impact on</u> <u>Risk Capital and Available Capital</u> and the <u>dynamic interaction between assets and</u> <u>liabilities</u>.

Where were we?: the theoretical framework

- The Capital management may collide with the technical challenges of "measuring the capital".
- The methodology for developing the economic capital calculation and its projection is largely driven by the wide adoption of the 1-year VAR metric for the calculation of the Capital Requirement
- 1-year VAR calculation is based on the variability of the 1-year market consistent balance-sheet
- It requires the definition of a set of realistic 1-year risk factor outcomes.
- In each of these «realistic» scenario the MC Balance sheet is estimated using 1.000 riskneautral scenarios
- Implementation challenges led to models based on «instantaneous» stresses of the risk factor

Year 1: a stochastic simulation approach

Portfolio features:

- average residual duration of the contracts: 10 years
- minimum guarantee: 1% yearly consolidated ("cliquet")
- profit sharing: 80/20 participation, where the fund return exceeds the guarantee

- Definition of a 10.000 1year "real world" determination of the sources of risk underlying the business.
- Each scenario then gives rise to a set of 1.000 financial market consistent scenarios in which the fund value is calculated.
- This type of calculation provides with the full distribution of the fund value, allowing the VAR calculation for any desired confidence level, in line with the risk-appetite of the shareholder

Year 1: a stochastic simulation approach – PDF and guarantee levels

а

the

Year 1: a stochastic simulation approach – PDF and guarantee levels

Year 1: Economic Capital and financial guarantee mechanism

- The focus now is on the guarantee type, moving from a "cliquet" mechanism to a "at maturity" guarantee
- This type of guarantee is "less" onerous, increasing the Fund Value and reducing its volatility
- At the 99.5% confidence level the Solvency Ratio goes up to 302% (218% for the Cliquet type)
- The comparison with the "cliquet" type of guarantee shows an increase in the Free Surplus of 27%

Economic Capital Projection:

From one year to multiple years : the theoretical framework

- The calculation approach for the "1-year calculation" can be generalised to multiple years, repeating it in each projection time of interest:
 - Extending the "realistic" simulation (path dependent) till the period of interest
 - > In each realistic scenario, starting from the projection year, the MC Balance sheet is estimated using 1.000 risk-neautral scenarios
- While the procedure is «conceptually straighforward», there are big implementation challenges in practice: ranging from big computational demand to actuarial models limitations, 11

Economic Capital Projection:

Forward projection of economic capital requirements

Economic Capital Projection and counter cyclical measures (LTGA):

How does the counter cyclical measure affect the Economic Capital?

• The free surplus increases from 7.8 mln (without any counter cyclical mechanism) to 10mln (+28%).

Economic Capital Projection and LTGA:

How does the counter cyclical measure affect the Economic Capital?

Economic Capital Projection and LTGA:

How does the counter cyclical measure affect the Economic Capital?

The inclusion of a "countercyclical" mechanism reduces the volatility over the lifetime of the contracts

• The reduced volatility decreases the SCR, producing an higher surplus

From theory to practice:

then

the

in principle,

scenarios

Solvency Ratio Projection: a simplified approach (2/2)

Liability Portfolio in a single REAL WORD projection

A single REAL WORD projection

Liability Portfolio split by multiple DRIVERS in t=0 (e.g. guarantee, duration, EXI/NB,..)

FORWARD LOOKING MEASURE for evaluating Solvency Ratio in the next years

Forward looking measures to manage «tomorrow» Solvency ratios

Capital optimization example: stategic asset allocation

Market drift

- Risk budgeting definition & limits projections
- ✓ Monitoring target solutions
- ✓ Definition of clear assumption framework

SAA Market Values	Target	Lower Band	Upper Band
Liquidity and Govt. FRN Bond	3.9%	1.0%	15.0%
Government FIX Bond + I/L	52.1%	43.0%	62.0%
Corporate FRN Bond + ABS +HY	11.7%	8.5%	15.5%
Corporate FIX Bond	19.0%	12.0%	27.5%
Equity	7.4%	1.5%	10.0%
Alternative Investments	1.5%	0.0%	2.0%
Real Estate	4.2%	2.5%	7.5%
Total	100.0%		
Duration (with deriv.)	6.50	5.00	8.00
% Corp on Tot FI	35.4%		

Bands Sensitivity	Lower Risk Allocation	Higher Risk Allocation	LB
Δ% RAC vs. Target	-38.1%	31.8%	
Δ Portfolio Assets Volatility	1.2%	-1.1%	_

