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 THE AIM OF THIS PAPER

Considering a real case study, we derive the capital requirement for premium risk for a single line
of business through a partial internal model.

We focus on the analysis of claim size distribution by exploring the performance of alternative
methodologies based on the Minimum Distance Approach to fit pure, mixtures and spliced
distributions.

This topic is relevant in the actuarial literature in order to analyse the impact of a threshold to
separate attritional and large claims in the identification of the claim size distribution to be used for
risk capital evaluation (premium risk in Solvency II).
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Aggregate Claim Amount and claim-size distribution
• Both premium rating and capital requirement for Premium Risk are based on a proper valuation

of the aggregate claim amount X for each LoB.

• The aggregate claim amount is well described by a compound process as the sum of a random
number K of random variable Zj :

• Calibration of claim-size distribution (Zj) is a key point in most applications:
– no standard parametric model seems to emerge as providing an acceptable fit to both small

and large claims;

– the identification of the threshold to separate attritional and large claims is a challenge
native property of spliced/mixture distributions;

– claims are usually posted in the case reserve nearby a “round” number rather than its
exact estimation leading to observe probability peaks in the empirical distribution;

– it may be necessary to set up some constraints in parameter estimation (for example, the
mean of empirical distribution equal to the mean of fitted distribution). That point is quite
relevant for the due consistency with pricing analysis.
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Insurance Claims Dataset (Property LoB)
• Incurred amounts of claims (included ULAE and ALAE) of current year (2012) for a Property line 

of Business are reported in Figures (to consider only premium risk).
• Z represents the claim size distribution to be analysed in order to quantify the capital requirement.
• Many replicated values could be observed in empirical distribution (on log scale)
• A similar analysis has been developed by using the well-known Fire Danish claims

Main Characteristics
Empirical Distribution
N. Obs 33,701.00 

Mean 3,616.45 

St. Dev 44,029.28 

CV 12.17 

Skewness 80.46 

Kurtosis 8,203.58 

10th Percentile 312.17 

1st Quartile 661.49 

Median 1,215.32 

3rd Quartile 2,217.83 

99th Percentile 34,100.00 

99.9% 258,713.20 

99.99% 1,395,598.12 

Min 1.00 

Max 5,339,663.91 



A Mixed Distribution
• Replicated values may condition the overall fitting process because of high densities concentrated in specific domain.

• Our proposal is to describe the distribution by using a mixed type distribution:
– a discrete random variable with domain characterized by the peaks;
– a continuous random variable (pure, mixtures or spliced distribution) for the remaining part.

• A random variable Z is a mixed type distribution if the domain S can be partitioned into subsets D and C with the 
following properties:

– D is countable and P(Z=z)>0 for  z D
– P(Z=z)=0 for  z  C

•

Main Characteristics
No Repl. Only Repl.

N. Obs 18,370.00  15,331.00 

Mean 5,171.47  1,753.19 

St. Dev 59,493.41  3,753.37 

CV 11.50  2.14 

Skewness 59.75  16.15 

Kurtosis 4,508.43  421.33 

1st Quartile 680.88  645.79 

Median 1,328.56  1,167.46 

3rd Quartile 2,634.57  1,760.90 

99.5th Perc. 103,232.74  22,947.58 

99.9% 447,647.33  41,734.37 

99.99% 3,065,504.32  124,813.14 

• Thus, part of the distribution of  Z is concentrated at points in a discrete 
set D, while the rest of the distribution is continuously spread over C.

z  C z  D



ML vs MDA

• Having chosen a distribution, Maximum Likelihood (ML) is the most common method to estimate
parameters.
ML aims at estimating parameters such that they include the maximum information coming from the
sample. The estimates drive the shape of the theoretical distribution.

• A viable alternative is represented by a Minimum Distance Approach (MDA). The original MD method
(Parr (1985), Basu et al. (2011)) consists in solving the general unconstrained problem: 

• If it exists a	θ ∈ Θ such that: , ; min , ; ; ∈ Θ 	then θ is the minimum 
distance estimator of

min , ; 		 ∈

- , , … , is an i.i.d. random sample from a population with cdf ;

-
∑

is the empirical distribution (ecdf)
- ∙ is an appropriate distance function

Examples of d

, ; ≔

: ;

: 	 ;

: 	
;

; 1 ;
For further distance measures see Titterington et al. (Table 4.5.1)  
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Univariate Distributions

• Two classical univariate
distributions (Pareto Type II and
LogNormal) have been fitted to:
• the empirical distribution (Z)
• only the distribution without

replications (Z  C)
by using a classical MLE approach
and original MD method with a
AD loss function.

• As shown by the q-q plots, both
distributions assure a discrete
fitting to the distribution with no
replications only on the body (until
95° percentile more or less) and a
significant underestimation on the
tails.



• A two step strategy, based on a separate evaluation of attritional and large claims is a standard way to describe
claim-size distribution:
– Several distributions for modelling positive and right-skewed data are proposed in actuarial science (see

Klugman et al. (2010))
– Extreme value theory and Generalized Pareto distributions are used to describe large claims exceeding a fixed

threshold (see McNeil (1996), Embrechts et al. (1997), Gonzalez et al. (2013)).

• Other approaches are based on mixtures and composite distributions:
– Frigessi et al (2002) propose a weighted mixture model based on a GPD and on a light-tailed distribution
– Cooray, Ananda (2005) combine LogNormal and Pareto distributions by fixing the proportion of large claims
– Teodorescu, Vernic (2007), Teodorescu, Panaitescu (2007), Vernic et al. (2009) provide different mixtures

based on Exponential-Pareto, Weibull-Pareto and LogNormal-LogNormal.
– Scollnik (2007) expands Cooray & Ananda paper by estimating the threshold directly by data and propose a

LogNormal-GPD version.
– Pigeon, Denuit (2011) extend the LogNormal-Pareto model by assuming a random threshold (Gamma or

LogNormal distributed)
– Nadarajah, Bakar (2012) try to improve fitting to Danish Data by using a composite distribution based on a

LogNormal and various distributions for large claims. They assume the LogNormal-Burr as the best one for
Danish Data.

All papers use maximum log-likelihood (ML) approach to estimate parameters.
Most of them use the public Fire Danish losses database to test the performance of their own
method
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Mixture LogNormal-LogNormal
ML vs MDA

• A LogNormal-LogNormal
Mixture have been applied by 
using ML and MDA (CvM Loss 
Function)

• ML estimates has been computed 
by using the EM algorithm

• ML provides an underestimation 
of a tail, while MDA assures a 
better fitting on extreme values 
and an overestimation on the 
body. 

1
with 0 1

Quantiles Empirical ML MDA(CvM)

50% 1,329  1,315  1,484 

90% 5,975  6,263  9,341 

99% 51,988  60,027  49,310 
99.50% 103,233  116,006  84,244 
99.90% 447,647  370,824  450,898 
99.99% 3,065,504  1,181,437  2,495,439 
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• In literature a modern approach is based on the estimation of spliced distributions.

The corresponding probability density function for a random variable Z with domain (c0,c2) is
defined as:

‐ is the weight
- ci is the limit of the domains
‐ ∗ 	is a truncated probability density function 
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Spliced Distribution

• This distribution allows to identify a threshold of separation between the two components.

• Further conditions must be imposed if continuity and differentiability at the knots are needed 
(see Scollnick (2007) , Denuit et al. (2011),  Nadarajah, Bakar (2012)  for Composite 
distributions such as LogNormal-LogNormal and LogNormal-GPD)



Spliced LogNormal-LogNormal
ML vs MDA

Quantiles Empirical ML MDA(CvM)

50% 1,329  1,315  1,325 

90% 5,975  6,208  5,950 

99% 51,988  54,306  52,348 
99.50% 103,233  100,832  97,776 
99.90% 447,647  387,046  395,419 
99.99% 3,065,504  2,021,142  2,357,818 

• A LogNormal-LogNormal
Spliced Distribution have been 
applied by using ML and 
MDA (CvM Loss Function)

• Both ML and MDA provides a 
better fitting (w.r.t. Mixtures) 
on the body with an 
underestimation of right tail.
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• A generalization of the approach could be derived by assuming:

where: q>0, 0	, w , 0	

• If both q=2 and w , , the approach leads to CvM loss distance.

For q=1,	w , , we have the Wolfowitz distance.

• We have investigated different choices of	w , :
– w , 1 ∝
– w , ∝
– w , ∝ 	 	

• Further research will regard appropriate priors for w , 	under a bayesian framework.
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Minimum Distance Approach
weighted Lq norm distances (WMDA(q,p))

min , w ,

Useful to control tail estimation for risk analysis



Normalized weighted Lq norm distances
• Since for different q, p, distances are not fully comparable, the choice of the best fitting for different 

combination of q, p will correspond to the solution with the minimum ratio between the distance and 
the corresponding maximum value.

• For any q-norm and weighted q-norm, the following relations hold:
– ∑ / 	max	 q 1

– , ∑ / ∑ ∙ /
/

max ∙ / 					 0

• We derive then the statistics :
∑ , ∙ ,

max , ∙ ,
1

The lower is the ratio the better is the fitting

13



Diagnostics
• We introduce further naive diagnostics, other than q-q plot in order to compare different models. 

• qq- residuals

D ∑ ;	 ,
/

i.e. the Euclidean distance between the data and the quantiles obtained from FZ where , are the 
corresponding parameter estimates.

• D is heavily influenced by extreme right values. 
Alternative indexes are:
• The mean of the raw residuals
• The estimate of the slope, ,  of the constrained least squares regression line:

̂  									 . . 	 0
where ̂ , are the -th quantiles of the fitted model and of the empirical distribution, 
respectively. 
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ML vs WMDA
Mixtures (LogNormal-LogNormal)

• Weighted MDA have been 
initially applied to a 
LogNormal-LogNormal
mixture

• The best combination of 
(q,p) was equal to (2,1.7) 
and it allowed to derive a 
behaviour better than both 
ML and classical MDA.

Quantiles Empirical ML MDA(CvM) WMDA

50% 1,329  1,315  1,484  1,231 
90% 5,975  6,263  9,341  7,608 
99% 51,988  60,027  49,310  54,083 
99.50% 103,233  116,006  84,244  95,407 
99.90% 447,647  370,824  450,898  452,217 
99.99% 3,065,504  1,181,437  2,495,439  2,975,952 
99.999% 4,983,665 2,198,212  5,402,755  5,299,414 
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ML vs WMDA
(LogNormal-Pareto)

• Two alternative models (mixture and spliced) based on a LogNormal-Pareto II have been applied by 
using ML and WMDA

Mixture
LogNormal-Pareto

Spliced
LogNormal-Pareto



ML vs WMDA
Spliced

LogNormal-LogNormal LogNormal-GPD

• Two alternative spliced models (LogNormal-LogNormal) and (LogNormal-GPD) have been applied 
by using ML and WMDA



A Comparison of the Models

• A comparison of quantiles are reported in the upper part of the Table.
• Coloured cells are the cases where the absolute differences between fitted and empirical quantiles
are greater than 10%.
• In the lower part of the table main diagnostics (in green best models)



Claim-Size Distribution

• Previous models have been fitted considering only the distribution without replications (ZC).
• Full claim size distribution is then easily derived for each model by using the cdf of the mixed 

variable where:
– for Z  C we use the fitted model
– for Z  D we use the empirical distribution

• Some examples of the pdf of claim-size distributions are reported in Figures.



Premium Risk capital charge
and Aggregate Claim Amount

• A Collective Risk Simulation Model is here applied with the aim to quantify the required capital 
for premium risk of the LoB at  the end of year t.

• We denote, for simplicity, with the r.v. , the amount of incurred claims 
(both paid and reserved) in the current year t+1. 
(NB: from now on the superscript tilde indicates random variables).
Furthermore we assume that acquisition and management expenses are deterministic.  

• Following the collective approach, for each line of business the aggregate claims amount is given
by a mixed compound process





 

1
~
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where:
‐ ~ : the number of claims distribution ( ) is

the Poisson law, with a parameter n increasing year by year by the
real growth rate g (nt+1=nt·(1+g)) and with a structure variable
distributed as a Gamma with mean equal to 1

- the claim size amounts Zj,t+1 are assumed i.i.d. and scaled by the
claim inflation rate i: E(Zr

t+1)=(1+i)r · E(Zr
t).

We will compare the fitted models properly scaled.
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Parameters

Number of Claims
34,375

6%

Claim Size Distribution
3,724.95

12.17

80.46

Loadings
λ (safety loading) 5%

(exp. loading) 30%

Gross Premiums
192,067,510.97 

182,816,972.18 

As regard to parameter calibration:
• The expected number of claims for next year

considers a growth rate of roughly 2%, while
the expected average claim amount has been
scaled by a 3% inflation rate.

• Variability coefficient and skewness of claim
size distribution reported in Table are derived
by the empirical distribution. We will use
directly fitted models in aggregate claim
amount evaluation.

• Expected Gross Premiums of next year are 
derived as:

∙
1 λ
1

where:
• is the risk premium
• λ is the safety loading coefficient (as a 

percentage of risk premium)
• is the expenses loading coefficient (as a 

percentage of gross premium)
For sake of simplicity that written premiums are 
assumed to be equal to earned premium



• Capital requirement for premium risk has been obtained as a difference between the 99.5% quantile and the 
expected value of the aggregate claim amount distribution:

0.995

• We report both the amount of the capital requirement ( ) and the ratio between the capital 
requirement and initial gross premiums: . 

As a reference, the EU Solvency I requirement is around 16-20% of (net) written premiums for the overall 
risk of a non-life company

• The aggregate claim amount distribution is derived by a compound process using alternative models for 
severity distribution fitted previously.

Capital Requirement

LogNormal Mixture
LogN-LogN

Mixture
LogN-Pareto

Spliced
LogN-LogN

Spliced
LogN-GPD

Method of 
Moments

ML ML WMDA ML WMDA ML WMDA ML WMDA

CoV 8.91% 6.13% 7.28% 9.11% 10.74% 8.37% 8.79% 8.96% 11.56% 9.86%

0.16 0.12 0.18 0.35 0.43 0.26 0.34 0.28 0.64 0.32

0.995
(x 106)

157.10 149.17 153.72 161.96 168.82 159.31 160.80 160.64 175.14 164.40

(x 106) 29.05 21.12 25.67 33.91 40.78 31.22 32.75 32.60 47.10 36.36 

15.89% 11.59% 14.04% 18.55% 22.30% 17.11% 17.92% 17.83% 25.76% 19.89%



• Final version of SF is still under review at the moment for
the final calibration, but recent Quantitative Impact Studies
(QIS5 and LTGA) provide the capital requirement for
premium risk for a single LoB as:
– , where ∙ measures the

difference between the 99.5 quantile and the mean of a
LogNormal distribution with standard deviation .

– , 3 .
– In QIS5, can be a fixed value (market wide approach) or 

calibrated by using internal data and fixed methodologies 
(undertaking specific approaches). 
LTGA provided only a market wide approach, without any 
undertaking specific methodologies.

– Volatility factors are equal to 10% in QIS5 and 8% in
LTGA.

A comparison
between Internal Model and Standard Formula

SF IM

• We compare the SCR ratio for premium risk derived by either Internal Model (IM) and EU Solvency II Standard
Formula (SF), obtained as previously mentioned as the ratio between the capital requirement and initial gross
premiums:
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• LogNormal distribution underestimates SCR ratio
• It is necessary to define how to select the alternative 

distribution to describe the insurer’s risk profile



Conclusion and Further Research

• A partial internal model has been developed in order to obtain capital requirement for
premium risk.
In particular, it has been analysed the effects of a different calibration of the severity
distribution on the aggregate claim amount

• WMDA seems to assure a better fit than ML due to its property to adapt the distribution to the
data.

• A good fit of extreme values is assured when weights are used. In some cases, the drawback is
that it can produce an underestimation of the body of the distribution.

• Further developments will regard an analysis of variability of estimators via bootstrap
procedures, a bayesian approach for weights.
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