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Participating Life Insurance Contract

Participating contracts is a popular class of insurance contracts. The premiums of these contracts
are invested in a reference portfolio. The policyholder not only receives the guaranteed minimum
return, but also participates in yields of the reference investment exceeding the minimum guarantee.
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Credit Risk

In the 1990s, many insurance companies default in Europe, Japan and the United States, such as

the First Executive Corporation, Garantie Mutuelle des Functionnaires and Nissan Mutual Life, etc.

Briys and De Varenne (1994 GPRIT, 1997 JRI), Grosen and Jørgensen (2002, JRI), Bernard, Le

Courtois, and Quittard-Pinon (2005, IME), Bernard, Le Courtois, and Quittard-Pinon (2006, NAAJ),

Le Courtois and Quittard-Pinon (2008, GRIR), Siu, Lau, and Yang (2008, IJSA), Fard and Siu (2013,

IME), Le Courtois and Nakagawa (2013, MF), Cheng and Li (2018, IME)
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Jump and Regime Switching

The evolution of asset prices includes important features such as jumps and regime switching.

In the short term, the evolution of asset prices exhibits fairly extreme movements.

In the long term, structural changes in the macroeconomic conditions or in the business cycles

cause modifications in the evolution pattern of asset prices.
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Our Main Contributions

We develop a transform-based approach for the pricing of participating life insurance contracts

with a constant guaranteed rate and with a floating guaranteed rate, in which we incorporate

credit, market (jump), economic (regime switching) risks.

We show that the contract with a floating guaranteed rate is a riskier but more worthy product

when comparing to the contract with a constant guaranteed rate.

We introduce dynamic and semi-static hedging strategies to hedge jump and regime switching

risks in the participating contracts.
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Participating Life Insurance Contracts

The life insurance company is supposed to invest A0 in a reference portfolio and the initial capital

of investment funds A0 is financed by the premium payment of policyholders L0 = αA0. Therefore,

the policyholders can enjoy benefit of excess investment return from a fraction α of the funds.

The contract promises the policyholders that the premium payment L0 will accumulate by a constant

minimum guaranteed rate r̃g during the life of the contract. Then, a guaranteed maturity payment

is Lg
T = L0er̃gT. Once the funds run enough well, the policyholders obtain the bonus payment

δ(αAT − Lg
T)+, where

T is the maturity of the contract.

AT is the maturity value of investment funds.

δ is the participation coefficient.
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The Payoff Structure

The payoff of the contract without early default is as follows:

ΘL(T) =



AT if AT < LT

LT if LT ⩽ AT ⩽ LT
α

LT + δ(αAT − LT) if AT >
LT
α

We assume that the insurance company is continuously monitored and the default happens when

the funds value At falls below a default boundary Bt = λLg
t . Then, the bankruptcy time is

τ = inf{t ⩾ 0 : At ⩽ λLg
t },

where

0 < λ < 1 is a boundary level parameter.

Lg
t = L0er̃gt is a nominal promise payment at time t ∈ [0,T].
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The Payoff Structure
Then, the pricing formula under the risk-neutral measure Q is as follows:

V = EQ

e
−

T∫
0

rsds
(Lg

T − (Lg
T − AT)+ + δ(αAT − Lg

T)+)1τ⩾T + e
−

τ∫
0

rsds
Aτ1τ<T

 ,

where

rs is the market interest rate at time s.

We decompose the above pricing formula into four terms as follows:

GF = EQ

e
−

T∫
0

rsds
Lg

T1τ⩾T



PO = EQ

−e
−

T∫
0

rsds
(Lg

T − AT)+1τ⩾T



BO = EQ

e
−

T∫
0

rsds
δ(αAT − Lg

T)+1τ⩾T



LR = EQ

e
−

τ∫
0

rsds
Aτ1τ<T


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The Regime Switching Jump Diffusion Model

The dynamics of the funds value is supposed to follow changes of an exponential regime switching
jump diffusion process under the risk-neutral measure Q:

At = A0eXt ,

where A0 is the initial funds value and X is a regime switching jump diffusion process:

Xt =
t∫
0
⟨µ̂, Js⟩ds +

t∫
0
⟨σ̂, Js⟩dWs +

t∫
0

d⟨N̂, Js⟩

where

J is a continuous time Markov chain process.

µ̂ and σ̂ are constant vectors.

For each state i, N̂i is a compound Poisson process with rate λ̂i and the jump size is modeled with an
asymmetric double exponential distribution.

W is an independent standard Brownian motion.
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The riskless rate also changes with the state of the economy. Let the riskless rate be rt = ⟨̂r, Jt⟩,
where r̂ = (̂r1, r̂2, ..., r̂n) and r̂i > 0 is the riskless rate at state ei.

Let Zt = Xt − r̃gt and Zt is still a regime switching Kou process. We rewrite the default time τ in
a constant barrier form as

τ = inf{t ⩾ 0 : Zt ⩽ ln λL0
A0

},

and the default characterization becomes related to a first passage time problem of the regime
switching Kou process Z.
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The First Passage Time Results
From Le Courtois and Su (2018), we introduce the following first passage time result of X, based
on which we deduce closed-form formulas for the price of the contracts.
Proposition 1 Denote the first passage time of X below a constant level b as τ, so that

τ = inf{t ⩾ 0 : Xt ⩽ b}.

Let at = ⟨a, Jt⟩ and the contingent payoff be hτ = ⟨Jτ, ĥ⟩ where ĥ = (ĥ1, ..., ĥn). For any w > −θ̃,
we have

E

e
−

τ∫
0

asds+wXτ

hτ

 = Y0W(a,−)eQ(a,−)(x−b)+wbI2n h̃,

where x is the initial point of X, Y0 is the initial state vector of Y,

h̃ =

(ĥ1, ..., ĥn
)
,

(
θ̂1

w + θ̂1
ĥ1, ...,

θ̂n

w + θ̂n
ĥn

)′

.

W(a,−) =

(
ζ(a,−)

I2n

)

ζ(a,−) and Q(a,−) are the Wiener-Hopf factors.

Y0 is the initial state of Y, which is a continuous time Markov chain process with a finite state space

E = E+︸︷︷︸
Positive jump

∪ E0︸︷︷︸
Pure diffusion

∪ E−︸︷︷︸
Negative jump

.
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The First Passage Time Results

Let M be the fluid embedding of X, where M is a continuous stochastic process whose sample paths

are constructed from the sample paths of X by replacing positive jumps with linear segments of

slope +1 and negative jumps with linear segments of slope -1.

The up-crossing and down-crossing ladder processes Ỹ+, Ỹ− of (M,Y) are defined as time changes

of Y that are constructed such that Y is observed only when new maxima and minima of M occur

respectively. They are Markov processes. Q(a,+) and Q(a,−) are the generator matrices of Ỹ+ and

Ỹ− and ζ(a,+) and ζ(a,−) are the corresponding initial distributions.

The quadruple (ζ(a,+),Q(a,+),ζ(a,−),Q(a,−)) is a unique Wiener-Hopf factorization of (M,Y)

when a > 0.
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The First Passage Time Results

Definition 1 Let
(

G(a,+) ,G(a,−)
)

be a pair of irreducible 2n × 2n matrices, that is, matrices with non-negative off-diagonal elements

and non-positive row sums, and
(
Π(a,+) ,Π(a,−)

)
be a pair of n × 2n matrices with rows made of sub-probability vectors. The

quadruple (
Π(a,+) ,G(a,+) ,Π(a,−) ,G(a,−)

)
is the Wiener-Hopf factorization of (M,Y) that is associated with a > 0 if

Ξ(−G(a,+) ,W(a,+)) = Ξ(G(a,−) ,W(a,−)) = O3n×2n ,

where
Ξ(S,W) =

1
2 Σ2WS2 + VWS + QaW,

with the 3n × 3n diagonal matrices:

Σ =



On×n 
σ̂1

. . .
σ̂n


On×n


, V =



In 
µ̂1

. . .
µ̂n


−In


,

and the 3n × 2n matrices:

W(a,+) =

(
I2n

Π(a,+)

)
, W(a,−) =

(
Π(a,−)

I2n

)
,

where In and I2n are identity matrices of size n × n and 2n × 2n, respectively, and O3n×2n denotes a zero matrix of size 3n × 2n.
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Numerical Method

From Le Courtois and Su (2018), we introduce a numerical method to compute matrix Wiener-Hopf
factorization. Once we have (ζ(a,+),Q(a,+),ζ(a,−),Q(a,−)), we can compute the value of the
contracts, whose closed-form expression will be built on these matrix Wiener-Hopf factors.

Numerical Algorithm for the Computation of (ζ(a,+),Q(a,+),ζ(a,−),Q(a,−))

Step 1: Compute 4n roots

ℜ(ν1) ⩽ ℜ(ν2) ⩽ ... ⩽ ℜ(ν2n) ⩽ 0 ⩽ ℜ(ν2n+1) ⩽ ℜ(ν2n+2) ⩽ ... ⩽ ℜ(ν4n)

from the equation f(ν) = 0 where f(ν) = det(K(ν)) = 0 and K(ν) =
1
2Σ2ν2 − Vν+ Qa.

Let
β̃i = νi, i = 1, ..., 2n,

β̄j = −ν2n+j, j = 1, ..., 2n.

Step 2: For i = 1, ..., 4n, compute the 3n×1 vector γi by solving a system of linear equations
K(νi)γi = 0.
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Numerical Method
Step 3: Let

ϑ̃i = (γi,1, ...,γi,2n)
′, i = 1, ..., 2n,

ϑ̄j = (γ2n+j,n+1, ...,γ2n+j,3n)
′, j = 1, ..., 2n,

and
Z̃ = [ϑ̃1, ϑ̃2, ..., ϑ̃2n], Z̄ = [ϑ̄1, ϑ̄2, ..., ϑ̄2n].

Then, we obtain
Q(a,+) = Z̃ diag{β̃1, β̃2, ..., β̃2n} Z̃−1,

Q(a,−) = Z̄ diag{β̄1, β̄2, ..., β̄2n} Z̄−1.

The matrix exponential is computed as:

eQ(a,+)x = Z̃ diag{eβ̃1x, eβ̃2x, ..., eβ̃2nx} Z̃−1,

eQ(a,−)x = Z̄ diag{eβ̄1x, eβ̄2x, ..., eβ̄2nx} Z̄−1.

Step 4: For k = 1, ..., n, compute 2n × 1 vector ξ̃k by solving a system of linear equations
Z̃′ξ̃k = (γ1,2n+k, ...,γ2n,2n+k)′ and compute 2n × 1 vector ξ̄k by solving a system of linear
equations Z̄′ξ̄k = (γ2n+1,k, ...,γ4n,k)′. Then,

ζ(a,+) = [ξ̃1, ξ̃2, ..., ξ̃n]
′

and
ζ(a,−) = [ξ̄1, ξ̄2, ..., ξ̄n]

′.
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Contract Valuation
Let ĜF and L̂R be the Laplace transform of GF and LR, respectively, and ˜̂PO and ˜̂BO be the

Laplace-Fourier transform of PO and BO, respectively. Then, we obtain

ĜF(u) = L0

Y0W(r̂+u−r̃g ,−)

Z̃ e
Q(r̂+u−r̃g ,−)

Z̃

x−ln
λL0
A0


H(0) − J0

 (Q − diag{̂r + u − r̃g})
−11n.

L̂R(u) =
A0
u Y0W(r̂+u−r̃g ,−)

Z̃ e
Q(r̂+u−r̃g ,−)

Z̃

x−ln
λL0
A0

+ln
λL0
A0

I2n
H(1)1n.

˜̂PO(u, v) = −
A0

(α1 − iv)(α1 − iv − 1)

Y0W(r̂+u−r̃g ,−)

Z̃ e
Q(r̂+u−r̃g ,−)

Z̃

x−ln
λL0
A0

−(α1−iv−1) ln
λL0
A0

I2n

H(iv + 1 −α1) − J0
)
(Q − diag{̂r + u − r̃g −ϕZ

k (iv + 1 −α1)})
−11n.

˜̂BO(u, v) =
δαA0

(α2 − iv)(α2 − iv + 1)

Y0W(r̂+u−r̃g ,−)

Z̃ e
Q(r̂+u−r̃g ,−)

Z̃

x−ln
λL0
A0

+(α2−iv+1) ln
λL0
A0

I2n

H(α2 − iv + 1) − J0
)
(Q − diag{̂r + u − r̃g −ϕZ

k (α2 − iv + 1)})−11n.
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Contract Valuation

where

Q is the generator matrix of J.

ϕZ
k (z) = µ̂Z

k z + 1
2 σ̂2

kz2 + λ̂k

(
p̂kη̂k
η̂k − z +

q̂kθ̂k
θ̂k + z

− 1
)
.

H(w) =



In

θ̂1
w + θ̂1

. . .
θ̂n

w + θ̂n




.
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Contract Valuation

The two states e1 and e2 represent a ”good” and a ”bad” macroeconomic environment, respectively,
where the ”good” one bears higher interest rates and makes the funds value dynamics exhibit
favorable features, such as less fluctuations, smaller average size of negative jumps and larger average
size of positive jumps, etc.

Table 1 Contract Parameters
α r̃g δ T λ

0.85 0.02 0.9 10 0.8

Table 2 Funds Dynamics Parameters
A0 State r̂ σ̂ λ̂ p̂ η̂ θ̂

100
e1 0.03 0.2 1.5 0.5 35 45
e2 0.02 0.4 3 0.5 45 30
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Contract Valuation

Table 3 Contract and Subcontract Values

(q12, q21) GF PO BO LR Contract Time

Laplace-Fourier

(1, 0.5) 13.6173 -0.0345 21.7168 55.8348 91.1343 0.2555 min

(0.75, 0.75) 16.0942 -0.0457 21.4250 53.3456 90.8190 0.3301 min

(0.5, 1) 19.3834 -0.0628 21.0055 50.1079 90.4340 0.2810 min

Monte-Carlo

(1, 0.5) 13.8766 -0.0379 21.9741 55.2439 91.0567 (90.9310, 91.1823) 29.8889 min

(0.75, 0.75) 16.3868 -0.0497 21.6857 52.7593 90.7821 (90.6696, 90.8946) 29.8177 min

(0.5, 1) 19.7011 -0.0674 21.1984 49.5445 90.3765 (90.2834, 90.4696) 30.5151 min
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Contract Valuation

The fair contract follows the equilibrium condition: the policyholders’ premium investment L0 is
equal to the initial market value of the contract V. This condition enables us to compute the fair
participating rate in terms of the other parameters:

δ =
L0 − GF − PO − LR

BO∗ ,

where BO∗ = EQ

(
(αA0eZT − L0erfT)+1τ⩾T

)
is the stochastic component of BO, which can be

solved by using the same method as in computation of BO.

0.015 0.02 0.025 0.03 0.035

r̃g

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

δ

(q
12

,q
21

)=(1,0.5)

(q
12

,q
21

)=(0.75,0.75)

(q
12

,q
21

)=(0.5,1)

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

α

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

δ

(q
12

,q
21

)=(1,0.5)

(q
12

,q
21

)=(0.75,0.75)

(q
12

,q
21

)=(0.5,1)
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Constant Guaranteed Rates V.S. Floating Guaranteed Rates

We compare the current contracts (constant contracts) with the contracts having a floating guar-
anteed rate (floating contracts), whose minimum guaranteed rate is linked to market interest rates.
Let the guaranteed interest rates of the floating contracts be rg

s = rf + rs at time s where rs is the
market interest rate and rf is a constant to control the difference between the guaranteed rates and
market interest rates.

The floating guaranteed rates reduce risk exposure to the fluctuations of interest rate, which cir-
cumvents an issue of a dramatic narrowing in the safety margin when low interest rates persist for
long.

23 / 34



Introduction Participating Life Insurance Contracts The Regime Switching Jump Diffusion Model The First Passage Time Results Contract Valuation Constant Guaranteed Rates V.S. Floating Guaranteed Rates Two Hedging Strategies

Constant Guaranteed Rates V.S. Floating Guaranteed Rates

The four subcontract terms of the floating contracts are as follows:

GF = L0erfTQ(τ ⩾ T)

PO = EQ

(
−erfT(L0 − A0eZT)+1τ⩾T

)
BO = EQ

(
δerfT(αA0eZT − L0)+1τ⩾T

)
LR = EQ

(
A0erfτeZτ1τ<T

)

where Zt = Xt −
t∫
0

rg
s ds.
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Constant Guaranteed Rates V.S. Floating Guaranteed Rates
The Laplace or Laplace-Fourier transform results of the four subcontracts terms of the floating

contracts are

ĜF(u) =
L0

u − rf

1 − Y0W(ũ−rf ,−)
Z e

Q(ũ−rf ,−)
Z

x−ln
λL0
A0


H(0)1n



L̂R(u) =
A0
u Y0W(ũ−rf ,−)

Z e
Q(ũ−rf ,−)

Z

x−ln
λL0
A0

+ln
λL0
A0

I2n
H(1)1n

˜̂PO(u, v) = −
A0

(α− iv)(α− iv − 1)

Y0W(ũ−rf ,−)
Z e

Q(ũ−rf ,−)
Z

x−ln
λL0
A0

−(α−iv−1) ln
λL0
A0

I2n

H(iv + 1 −α) − J0
)
(Q − diag{u − rf −ϕZ

k (iv + 1 −α)})−11n

˜̂BO(u, v) =
δαA0

(α− iv)(α− iv + 1)

Y0W(ũ−rf ,−)
Z e

Q(ũ−rf ,−)
Z

x−ln
λL0
A0

+(α−iv+1) ln
λL0
A0

I2n

H(α− iv + 1) − J0
)
(Q − diag{u − rf −ϕZ

k (α− iv + 1)})−11n

(1)
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Constant Guaranteed Rates V.S. Floating Guaranteed Rates

Table 3 Contract and Subcontract Values
(q12, q21) GF PO BO LR Contract Time

Laplace-Fourier
(1, 0.5) 13.6173 -0.0345 21.7168 55.8348 91.1343 0.2555 min

(0.75, 0.75) 16.0942 -0.0457 21.4250 53.3456 90.8190 0.3301 min
(0.5, 1) 19.3834 -0.0628 21.0055 50.1079 90.4340 0.2810 min

Monte-Carlo
(1, 0.5) 13.8766 -0.0379 21.9741 55.2439 91.0567 (90.9310, 91.1823) 29.8889 min

(0.75, 0.75) 16.3868 -0.0497 21.6857 52.7593 90.7821 (90.6696, 90.8946) 29.8177 min
(0.5, 1) 19.7011 -0.0674 21.1984 49.5445 90.3765 (90.2834, 90.4696) 30.5151 min

Table 4 Contract and Subcontract Values

(q12, q21) GF PO BO LR Contract Time

Laplace-Fourier
(1, 0.5) 13.5018 -0.0344 21.5684 56.1638 91.1997 0.3707 min

(0.75, 0.75) 15.9877 -0.0458 21.3005 53.6339 90.8763 0.3458 min
(0.5, 1) 19.2957 -0.0632 20.9117 50.3350 90.4793 0.3503 min

Monte-Carlo
(1, 0.5) 13.7843 -0.0375 21.8485 55.5522 91.1475 (91.0225, 91.2726) 29.4393 min

(0.75, 0.75) 16.3144 -0.0500 21.5504 53.0190 90.8338 (90.7216, 90.9460) 29.8192 min
(0.5, 1) 19.6178 -0.0678 21.1404 49.7671 90.4574 (90.3633, 90.5516) 30.5365 min
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Constant Guaranteed Rates V.S. Floating Guaranteed Rates

Let y0 be a discount rate that makes the discounted promised maturity payment equal to the

premium, i.e.,

L0ey0T = L0EQ

e
T∫
0

rgs ds
 .

We obtain the explicit form of y0 as

y0 =
log(J0e(Q+diag{rf+r̂})T1n)

T .

When we compare the constant contracts and floating contracts, we make them bear the same

promised maturity payment, i.e., y0 = r̃g, and keep the same in other settings.
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Constant Guaranteed Rates V.S. Floating Guaranteed Rates
The floating contracts are riskier products accompanied with higher returns.
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Hedging Strategy

We develop a dynamic hedging strategy where we choose the optimal delta to minimize the quadratic

risk of the change differences between the value of the hedging portfolio and participating contracts

at each rebalance time. We also introduce a semi-static hedging strategy developed in He, Kennedy,

Coleman, Forsyth, Li, and Vetzal (2006), where we make some adjustments to fit our regime

switching case.
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Dynamic Hedging Strategy

We compute the delta by solving the following optimization problem:

arg min
δk

E((∆Ck − δk∆Sk)
2|Fk).

Then, at t0, the bank account B0 = C0 − δ0S0. At each rebalance time tk, the bank account after
rebalancing changes into

Bk = e

tk∫
tk−1

rsds
Bk−1 − (δk − δk−1)Sk.

Then, at time tk after rebalancing the overall hedged position has value

Π(tk) = −Ck + δkSk + Bk,

where

Bi is the amount of the bank account at each rebalance time ti.

∆Ci,∆Si are the value change from ti to ti+1 in the participating contract and the underlying asset, respec-

tively.
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Semi-static Hedging Strategy

The semi-static hedging strategy in He, Kennedy, Coleman, Forsyth, Li, and Vetzal (2006) computes
the optimal holding {ek, ŵk} at each rebalance time tk by solving the following optimization problem

arg min
ek ,ŵk

E


∆Ck − ek∆Sk −

ñ∑
j=1

ŵk,j∆Îk,j

2

|Fk

 ,

where 

∆Ck = Ck+1 − e

(k+1)∆∫
k∆

rsds
Ck

∆Sk = Sk+1 − e

(k+1)∆∫
k∆

rsds
Sk

∆Îk,j = Îk+1,j − e

(k+1)∆∫
k∆

rsds
Îk,j

,

which takes time value into consideration because of the large rebalance time interval that is induced
by infrequent rebalances in the semi-static hedge, where

∆ is the time step size of the m rebalance times.

Îi = (̂Ii,1, ..., Îi,ñ) are the value of ñ options at rebalance time ti.
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Semi-static Hedging Strategy

Then, at t0, the bank account B0 = C0 − e0S0 −
ñ∑

j=1
ŵ0,ĵI0,j. The self-financing constraint makes

the bank account at time tk after rebalancing become

Bk = e

tk∫
tk−1

rsds
Bk−1 − (ek − ek−1)Sk −

ñ∑
j=1

(ŵk,j − ŵk−1,j)̂Ik,j.

Then, at time tk after rebalancing the whole hedged position has value

Π(tk) = −Ck + ekSk +
ñ∑

j=1
ŵk,ĵIk,j + Bk.
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Hedging Effectiveness

In the semi-static hedge, at each rebalance time tk we employ five call options with strike prices
0.8Sk, 0.9Sk,Sk, 1.1Sk, 1.2Sk and maturity tk+1. We make m = 10 and other parameters are set as
before except making r̃g = 0.015. We generate 100000 sample paths and for each path, we

calcuate the discounted profit and loss e
−

t∗∫
0

rsds
Π(t∗) (APL) and its relative value e

−
t∗∫
0

rsds Π(t∗)
V0

(RPL) at default time or maturity t∗ of the participating contract where V0 is the contract value.

Table 5 Comparison of hedging effectiveness

Measure No hedge Dynamic hdege Semi-static hedge

Mean(APL) 89.3036 0.9949 14.7473

Std(APL) 108.0681 24.2676 29.3182

VaR95%(APL) 246.8931 23.1145 49.4263

CVaR95%(APL) 434.2527 26.5566 71.9829

Mean(RPL) 1.0000 0.1157 0.2133

Std(RPL) 1.2101 0.2580 0.3919
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Hedging Effectiveness

Figure 6 Comparison of probability densities of APL
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