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Introduction

» Annuities are among the most important life insurance
products.

» The cost of annuities is determined by mathematical models
based on financial and demographic factors.

» For adequate risk management actions it becomes necessary
an effective uncertainty quantification of factor risks: which
risk has the biggest impact in determining the cost of
annuities? Are there completely irrelevant factors? Do they
interact?

> We present a comprehensive framework for Sensitivity
Analysis (SA) of annuities based at different scales.



Annuity model

The annuity model we consider is the standard whole-life
continuous annuity at age x

ax = / tPx€XP [_51:] dt7 (1)
0

where § represents the force of interest. The surviving probability
is given by ;px = exp [— fot ux+sds}, where iy is the force of
mortality at age x.



We assume that force of mortality (at time 0) at age x + u follows
the Gompertz law with parameters b and ¢

10, = explb + c(x + u)]. (2)

and that the mortality rates decrease by an exponential reduction
function of the form exp[—at], so that

0 —
/’L>t<+u = Hx+u€ at' (3)

Under these assumptions, the probability of surviving t years at age
x (on a cohort basis) becomes

(c—a)t _ 1
of €
e =exp |—pd [ — || 4
tPx = exp [ X ( c )] (4)



Consequently, the cost of annuity becomes the function

(3] (c—a)t _1q
(2, c,a,0) =/ exp [—MS <e>] e Vtdt  (5)
0 C—«

with a < c.

A first very simple way to investigate the model is to evaluate it
when inputs vary one factor at a time from a base-case input
x0 = (ug, C,Oz,&)o to a best case xT = (ug, c,a,5)+ and to a
worst case x~ = (3, ¢,a, ).



Local Sensitivity analysis: Finite Changes

In the general case, denote with g(x) :R"” — R the input-output
mapping of interest. Then, we can define the finite-change
sensitivity measures [Borgonovo and Plischke, 2016]

Afy =g(x":x2;) — g(x) (6)

and

ATy =g(x :x%) —g(x%) (7)
where (x;" : x%;) and (x. : x° ;) denote the scenario in which the
i—th input is changed according to the best or worst case,
respectively, for i = 1,.... n.



Finite change decomposition

For any multivariate mapping it is possible to decompose the finite
change Ag = g(x') — g(x°) across two different scenarios x° and
x! with the finite-change ANOVA expansion [Borgonovo, 2010]

n
Ag = ZAg’. + ZAgi’j + Z Agi,j,k + ...+ Ag1,2,...,n7 (8)
i=1 i<j i<j<k

where the 2" — 1 finite change effects of increasing dimension are
recursively given by

Agi=g(x 1 x2;) —g(x%)
Agij=g(x;:x%;;) — Agi — Agy — g(x°) 9)

The effects Agj, i = 1,2,...,n, are called main effects and the
other higher order terms are the interaction effects.



Total finite-change indices

In general, given the decomposition (8), it is possible to define the
total effect of factor x;

n n
A,-Tg = Agi+ Z Agij+ Z Agijk+...+Ag12. ..n (10)
J=1jAi kj=1,k#i#j

which is a measure of the total impact of x; to the total change
Ag. Analogously, the total interaction effect is

Alg=Alg - Ag (11)

the difference between the total and the main effects of x;.
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From Local to Global Sensitivity Analysis

> Local sensitivity methods provide insights only around the
base point x°.

» Inputs have typically a range and global measures become of
interest.

» To explore the whole input space one can consider a series of
two scenarios sampled across all the input space and then
aggregate local importance measures.

» Method of Elementary Effects [Morris, 1991; Campolongo et
al., 2011; Borgonovo and Rabitti, ?].



Input space

Parameter | Estimated value | Lower range ‘ Upper range

13, 0.00552155 0.005 0.006
c 0.085 0.08 0.09
a - -0.07 0.07
) - 0% 10%

Parameter values and ranges from [Haberman et al., 2011]. They

are estimated by regression using the Continuous Mortality

Investigation (1991-1994) mortality table for female pensioners at
ages 60 and over. [Haberman et al., 2011] introduce ranges of
variation for the parameters ¢, @ and §. We have chosen the range

of u,.
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Scatterplots with NV = 10000




GSA: Pearson correlation coefficient

[Pearson, 1905] defines the correlation coefficient

, 12
n; ryox (12)

where oy, is the standard deviation of the input X;, i =1,...,n.
This index measures the linear dependence between the two
variables Y and X;.



GSA: Functional ANOVA expansion

[Hoeffding, 1948; Efron and Stein, 1981] prove that the
multivariate mapping g can be decomposed as

= 8o+ Zgl X/ + ZgI,J XHXJ -t g1,2,...,n(X17X27

i<j

where

= [ g(x)dpx
8i XI) - fg dMX — 80
glj XI>XJ fg dMX_,-,j—gi(Xi)_gj(’ﬁ)_gO

(14)



GSA: Sobol’ indices - 1

Under independence the terms g,(x;), z C {1, ..., n}, are

orthogonal.
The output variance 0\2( can be decomposed as
n
2 2 2 2
oy =Y 0f+ Y 05 +0io (15)
i=1 i<j

where 02 = V[g,(x;)] is the variance of the group of variables
indexed by z C {1,..., n}. Every term can be interpreted as

02 = Varx, [Ex_, [Y|X]] . (16)

The index (16) has been used by [Bruno et al. 2000; Karabey et
al. 2014] to study the risk of a portfolio of life insurance policies
with mortality and interest rate risks.



GSA: Sobol’ indices - 2

If we normalize by the total variance, one finds

Zsi+zsi,j~-- +S512..0n=1, (17)

i=1 i<j
where the generic term is the sensitivity index of [Sobol’, 1993] and
is given by

o2

Y
Every term S, measures the proportion of the output variance
which the inputs x, contribute to.



Total Sobol’ effects

[Homma and Saltelli, 1996] define the total effect of the inputs x,

as
ST=Y s (19)
uNz#£D
Itis a measure of the total impact of inputs in z.

The sensitivity measures S, and S can shed light on the
importance of the inputs z in explaining the output variability.



Moment-independent sensitivity methods

[Baucells and Borgonovo, 2013] consider the sensitivity index SK°

B — [sl;p Fely) - m,m@ | (20)

Suppose now that the output admits a density fy(y). [Borgonovo,
2007] defines the 5}30 sensitivity measure

380 = 3 | [ 180~ A lay | (1)

These sensitivity measures are invariant under monotonic
transformations.



Figure 1: Sensitivity indices estimated from N = 10000 Monte Carlo runs.
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SA of annuities with dependent financial and mortality
factors

[Deelstra et al., 2016; Dacorogna and Apicella, 2016] consider the
role of dependence between mortality and interest rate in actuarial
valuations.

However, in such case there are some theoretical complications to
calculate the variance-based indices [Li and Rabitz, 2017].
Nonetheless, moment-independent measures can still be computed.
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Figure 2: The empirical density of the annuity model for independent
(blue line), positively correlated (red line) and negatively correlated
inputs (yellow line).
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Figure 3: Comparison of moment-independent sensitivity measures in
absence of correlation (blue bars) and with positive (yellow bars) and
negative correlation (golden bars) of 0.6 between v and 4. The Monte
Carlo runs are N = 10000.



Conclusions

> In the past it has been debated whether financial risk
connected to life annuities is more important than the
mortality risk.

» We have proposed the comprehensive framework of
[Borgonovo, Plischke and Rabitti, submitted] to investigate
the importance of these factors in determining the cost of
annuities.

» Qur results in the global case are in line with those of
[Karabey et al., 2014]. Moreover, we also provide insights on
the local and global scale with dependence.

» Future research: SA for stochastic simulation for portfolios of
variable annuities.



