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Introduction

The fundamental question in finance and insurance: how should we price

contingent claims?

Actuarial valuation is based on the idea of diversification. The actuarial value of

the claim is defined as the expectation under the real-world measure plus an

additional risk loading to cover any non-diversifiable risk,

Risk-neutral (arbitrage-free) valuation is based on the idea of replicating

investment portfolios. The arbitrage-free value of the claim is defined as the

expectation under the risk-neutral measure and it coincides with the market price

of the replicating portfolio,

Market-consistent valuation extends the arbitrage-free pricing operator with the

unique risk-neutral measure to the general set of non-hedgeable claims where we

have to choose the pricing objective and the pricing martingale measure. Recently

formalized as an extension of the notion of cash-invariance to all hedgeable claims,

Fair valuation – a valuation which is actuarial and market-consistent.
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Solvency II Directive

Insurance liabilities should be valued in a market-consistent way,

The market-consistent value of an insurance liability is defined as the sum of two

elements:

MC V alue = Best Estimate + Risk Margin,

The best estimate corresponds to the expected value of the future cash flows

weighted with probabilities and discounted with the risk-free interest rate,

The risk margin equals the amount of the funds necessary to support the insurance

obligations over their lifetime,

Market-consistency means that the model price of an asset traded actively in the

financial market must coincide with the price of this asset observed in the market,

The best estimate is only sufficient for hedgeable risks. The risk margin has to be

added for non-hedgeable risks in order to protect the insurer from adverse

deviations.
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IFRS 17

The general model measures a group of the insurance contracts as the sum of:

An unbiased and probability-weighted estimate of the future cash flows,

A discount adjustment to the present value to reflect the time value of money and

financial risks (the discount rates may include illiquidity premiums),

A risk adjustment for non-financial risks,

The risk adjustment is the compensation that the entity requires for bearing the

uncertainty about the amount and timing of cash flows that arise from

non-financial risks,

In contrast to Solvency II, the risk adjustment is an entity-specific perception and

results from indifference pricing of the variable cash flows - it is not the value that

reflects transfer to market participants.
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Overview

We consider a general financial and insurance model with hedegable and

non-hedgeable financial risks and non-hedgeable insurance risk,

We start with a one-period hedge-based valuation where an optimal dynamic

hedging portfolio for the liability is set up with traded assets and the

non-hedgeable part of the liability is valuated via a subjective actuarial valuation,

We define a multi-period valuation operator by backward iterations of the

one-period valuation operator1,

We investigate the continuous-time limit of the multi-period, discrete-time

iterations and derive a partial differential equation for the continuous-time

valuation operator which satisfies the limit,

Our continuous-time valuation operator is fair and decomposes into the best

estimate of liability and the risk margin – it is agrees with the Solvency II and

IFRS 17 valuation rules,

The dynamic hedging strategy associated with the continuous-time valuation

operator is established.
1

One-period and multi-period hedge-based valuations with static hedging strategies were introduced by J. Dhaene and K.

Brigou.
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The financial market

The risk-free asset:

dR(t)

R(t)
= rdt, 0 ≤ t ≤ T,

Two risky assets:

dY (t)

Y (t)
= µY dt+ σY dWY (t), 0 ≤ t ≤ T,

dF (t)

F (t)
= µF dt+ σF dWF (t), 0 ≤ t ≤ T,

where the processes (WY ,WF ) are correlated Brownian motions defined by

WY (t) = W1(t), WF (t) = ρW1(t) +
√

1− ρ2W2(t),

and (W1,W2) are independent Brownian motions.
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The insurance portfolio

The lifetimes of the policyholders (τk)k=1,...,n are independent and identically

distributed:

P
(

τk > t
)

= e
−

∫

t
0 λ(s)ds

, 0 ≤ t ≤ T,

The counting process and the compensated counting process:

N(t) =

n
∑

k=1

1{τk ≤ t}, Ñ(t) = N(t)−

∫ t

0

(n−N(s−))λ(s)ds,

The number of in-force policies:

J(t) = n−N(t),

The benefit stream process:

B(t) =

∫ t

0

(n−N(u−))A(u, Y (u), F (u))du+

∫ t

0

D(u, Y (u), F (u))dN(u)

+(n−N(T ))S(Y (T ), F (T ))1t=T , 0 ≤ t ≤ T.
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Hedgeable and non-hedgeable sources of risks

Tradeable financial risk Y :

B(t) = S(Y (T ))1{t = T},

Non-tradeable financial risk F :

B(t) = S(F (T ))1{t = T},

Non-tradeable insurance risk N :

B(t) =

∫ t

0

(n−N(u−))A(u)du+

∫ t

0

D(u)dN(u)

+(n−N(T ))S1{t = T}, 0 ≤ t ≤ T,

Tradeable financial risk Y and non-tradeable insurance risk N :

B(t) =

∫ t

0

(n−N(u−))A(u, Y (u))du+

∫ t

0

D(u, Y (u))dN(u)

+(n−N(T ))S(Y (T ))1{t = T}, 0 ≤ t ≤ T.
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Hedgeable and non-hedgeable sources of risks

Tradeable financial risk Y : The fluctuations of the risky asset Y impact the

payment process. This risk can be perfectly hedged by trading in Y ,

Non-tradeable financial risk F : The variations of the risky asset F impact the

benefit stream as well. This risk can be partially hedged by trading in Y , since Y

and F are correlated,

Non-tradeable insurance risk N : The risk arises since the policyholders die at

random times and the death-related benefits have to be paid at unpredictable

times. This risk cannot be hedged since it is assumed to be independent of the

financial market,

How should be hedge and price the hedgeable and non-hedgeable risks?

Our goal is to attach a fair value at any time t in [0, T ] to the future claims from

the benefit stream B and to find the dynamic hedging strategy which underlies the

fair value.
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Arbitrage-free valuation

The arbitrage-free value of the future claims from the process B:

ϕB(t,T ](t) = E
Q
[

∫ T

t

e
−r(s−t)

dB(s)|Ft

]

, 0 ≤ t ≤ T,

where

dQ

dP
|Ft = Mζ,χ(t), 0 ≤ t ≤ T,

dMζ,χ(t)

Mζ,χ(t−)
= −

(µY − r

σY

)

dW1(t) + ζ(t)dW2(t) + χ(t)dÑ(t),

The processes (ζ, χ) are called risk premiums used for pricing the non-hedgeable

financial and insurance risks,

By Q̂ we denote the unique equivalent martingale measure in the complete financial

market consisting of (R, Y ), or the equivalent martingale measure in the combined

financial and insurance model with zero risk premiums for the non-hedgeable risks.
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Fair valuation

The hedgeable benefit stream:

B
Y (t) =

∫ t

0

A(u, Y (u))du+ S(Y (T ))1{t = T}, 0 ≤ t ≤ T,

The orthogonal benefit stream:

B
N (t) =

∫ t

0

(n−N(u−))A(u)du+

∫ t

0

D(u)dN(u)

+(n−N(T ))S1{t = T}, 0 ≤ t ≤ T,

We use the notions of market-consistent, actuarial, fair valuation and hedging

strategy introduced by Jan Dhaene and Karim Barigou.
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Fair valuation

Definition
Let ϕB(t,T ](t) denote the value at time t ∈ [0, T ] of the future claims from the process B. We will say that

The valuation operator ϕ is market-consistent if for any process B and any hedgeable process BY we have that

ϕ
B(t,T ]+BY (t,T ]

(t) = ϕB(t,T ](t) + ϕ
BY (t,T ]

(t),

with

ϕ
BY (t,T ]

(t) = E
Q̂
[

∫

T

t
e
−r(u−t)

dB
Y

(u)|F
W1
t

]

, 0 ≤ t ≤ T,

where Q̂ denotes the unique equivalent martingale measure for the traded risky asset Y ,

The valuation operator ϕ is actuarial if for any orthogonal process BN we have that

ϕ
BN (t,T ]

(t) = E
P
[

∫

T

t
e
−r(u−t)

dB
N

(u)|F
N
t

]

+RM
act

BN (t,T ]
(t), 0 ≤ t ≤ T,

where, for each t ∈ [0, T ], the operator RMact

BN (t,T ]
(t) is independent of the risky assets (Y, F ),

The valuation operator ϕ is fair if it is market-consistent and actuarial.
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Fair valuation

Definition
Let (θB(t,T ](s), t ≤ s ≤ T ) denote the hedging strategy in the risky asset Y for the future claims from the process B. We

will say that

The strategy θ is market-consistent if for any process B and any hedgeable process BY we have that

θ
B(t,T ]+BY (t,T ]

(s) = θB(t,T ](s) + vy(s, Y (s))Y (s), t ≤ s ≤ T,

where v(t, y) = EQ̂[
∫

T
t

e−r(u−t)dBY (u)|Y (t) = y] and Q̂ denotes the unique equivalent martingale measure

for the traded risky asset Y ,

The strategy θ is actuarial if for any orthogonal process BN we have that

θ
BN (t,T ]

(s) = 0, t ≤ s ≤ T,

The strategy θ is fair if it is market-consistent and actuarial.
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One-period valuation operator

The idea is to split the valuation of the benefit stream into two parts:

The first part should give a price of a hedgeable part of the benefit stream and

should be related to the market cost of a hedging portfolio,

The second part should give a price of a non-hedgeable part of the benefit stream

left after the application of the hedging portfolio and should be related to the

real-world cost of the claims,

We have to make two decisions: How to define the hedging portfolio? And how to

measure the risk of the remaining non-hedgeable claims?
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One-period valuation operator - the hedging portfolio

Let θ = (θ(t), 0 ≤ t ≤ T ) denote the dynamic hedging strategy – the amount of

money invested in the risky asset Y ,

Let V θ = (V θ(t), 0 ≤ t ≤ T ) denote the self-financing hedging portfolio under the

strategy θ given by the dynamics

dV
θ(t) = θ(t)(µY dt+ σY dWY (t)) + (V θ(t)− θ(t))rdt

−(n−N(t−))A(t, Y (t), F (t))dt−D(t, Y (t), F (t))dN(t),

and the terminal claims (n−N(T ))S(Y (T ), F (T )) are subtracted from V θ(T ) at

time T ,

We minimize the mean-square hedging error at the terminal time under the

equivalent martingale measure Q̂:

inf
θ

E
Q̂
[

|(n−N(T ))S(Y (T ), F (T ))− V
θ(T )|2

]

.
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One-period valuation operator - the hedging portfolio

Proposition
Let us define the functions:

v
k
(t, y, f) = E

Q̂
t,y,f,k

[

∫

T

t
e
−r(u−t)

dB(u)
]

,

(t, y, f) ∈ [0, T ] × (0,∞) × (0,∞), k ∈ {0, ..., n}.

(i) The initial value of the hedging portfolio is given by

V
∗

B(0) = v
n
(0, Y (0), F (0)),

and the optimal dynamic hedging strategy is given by

θ
∗

B(t) = v
J(t−)
y (t, Y (t), F (t))Y (t)

+v
J(t−)
f

(t, Y (t), F (t))F (t)
σF

σY

ρ, 0 ≤ t ≤ T.

(ii) The optimal dynamic hedging strategy is market-consistent and actuarial, hence it is fair.

Remark: If we choose the real-world measure in the quadratic hedging objective, then the optimal strategy is not actuarial!
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One-period valuation operator - the actuarial risk margin

We introduce the one-period valuation operator:

̺(B) = V
∗
B(0) + π

[(

(n−N(T ))S(Y (T ), F (T ))− V
∗
B(T )

)

e
−rT

]

,

The one-period actuarial valuation operator π can be decomposed into

π[ξ] = E
P[ξ] +RM [ξ],

where RM denotes a one-period actuarial risk margin operator,

Consequently, we consider the one-period valuation operator:

̺(B) = V
∗
B(0) + E

P
[(

(n−N(T ))S(Y (T ), F (T ))− V
∗
B(T )

)

e
−rT

]

+RM
[(

(n−N(T ))S(Y (T ), F (T ))− V
∗
B(T )

)

e
−rT

]

= Best Estimate of B + Risk Margin for B.
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One-period valuation operator

Proposition
Let us assume that the one-period actuarial risk margin RM satisfies the conditions of normalization and translation-invariance:

RM [0] = 0, RM [ξ + a] = RM [ξ],

for any random variable ξ and constant a.

The one-period valuation operator is market-consistent and actuarial, hence it is fair.

Remarks:

We do not include any assumptions on the risk premiums for the non-hedgeable risks when we solve our hedging

problems,

The risk premiums used for pricing the non-hedgeable risks should be implied by the subjective one-period actuarial

valuation operator,

We can disentangle hedgeable and non-hedgeable parts of the benefit stream and price them separately,

Key examples of the one-period actuarial risk margin are standard deviation and variance,

Antoon Pelsser and Ahmad Ghalehjooghi consider a different operator splitting for the one-period market-consistent and

actuarial valuation operator.
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Multi-period valuation operator

Let us consider the time points T = 0, h, ..., T − h, T .

We iteratively and backward apply the one-period valuation operator with time

step h:

ϕB(T ) = (n−N(T ))S(Y (T ), F (T )),

ϕB(t) = ̺t

(

∫ t+h

t

dB̃(s)
)

, t = 0, h, ..., T − h,

B̃(s) =

∫ s

t

(n−N(u−))A(u, Y (u), F (u))du

+

∫ s

t

D(u, Y (u), F (u))dN(u)

+ϕB(t+ h)1{s = t+ h}, t ≤ s ≤ t+ h,

We introduce the multi-period valuation operator:

ϕB(t) = V
∗
B̃(t) + E

P
[(

ϕB(t+ h)− V
∗
B̃(t+ h)

)

e
−rh|Ft

]

+RM
[(

ϕB(t+ h)− V
∗
B̃(t+ h)

)

e
−rh|Ft

]

, t = 0, h, ..., T − h.
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Continuous-time valuation operator

We would like to extend the definition of the price ϕB(t) from t ∈ T to all times

t ∈ [0, T ],

The continuous-time valuation operator ϕB is defined as an operator which

satisfies the continuous-time limit of the discrete-time pricing equation,

We are interested in finding ϕ which satisfies

lim
h→0







Et,y,f,k

[

(

ϕ(t+ h)− V ∗
B̃
(t+ h)

)

e−rh −
(

ϕ(t+ h)− V ∗
B̃
(t+ h)

)

]

h

+
RMt,y,f,k

[

(

ϕ(t+ h)− V ∗
B̃
(t+ h)

)

e−rh −
(

ϕ(t+ h)− V ∗
B̃
(t+ h)

)

]

h







= 0,

for any (t, y, f, k) ∈ [0, T )× (0,∞)× (0,∞)× {0, ..., n}.
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Continuous-time valuation operator

Theorem
Let us consider the system of PDEs:

ϕ
k
t (t, y, f) + ϕ

k
y(t, y, f)yr + ϕ

k
f (t, y, f)f

(

µF −
µY − r

σY

σF ρ
)

+ϕ
k
yf (t, y, f)yfσY σF ρ +

1

2
ϕ
k
yy(t, y, f)y

2
σ
2
Y +

1

2
ϕ
k
ff (t, y, f)f

2
σ
2
F

+kA(t, y, f) +
(

ϕ
k−1

(t, y, f) + D(t, y, f) − ϕ
k
(t, y, f)

)

kλ(t) − ϕ
k
(t, y, f)r

+Φ
k
(

t, ϕ
k
f (t, y, f)fσF

√

1 − ρ2, ϕ
k−1

(t, y, f) + D(t, y, f) − ϕ
k
(t, y, f)

)

= 0,

(t, y, f) ∈ [0, T ) × (0,∞) × (0,∞),

ϕ
k
(T, y, f) = kS(y, f), (y, f) ∈ (0,∞) × (0,∞), (1)

for k ∈ {0, ..., n}, where Φk(t, x1, x2) = 1
2
γ(x2

1 + x2
2kλ(t)) for the variance risk margin and

Φk(t, x1, x2) = 1
2
γ
√

x2
1 + x2

2kλ(t) for the standard deviation risk margin.

We assume that there exist unique solutions (ϕk)k=0,...,n to the PDEs (1).
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Continuous-time valuation operator

Theorem
(i) The continuous-time valuation operator ϕ determined by (1) satisfies the continuous-time limit of the discrete-time pricing

equation as h → 0. In particular, we prove

lim
h→0

RMt,y,f,k

[

(

ϕ(t + h) − V ∗

B̃
(t + h)

)

e−rh −
(

ϕ(t + h) − V ∗

B̃
(t + h)

)

]

h

= Φ
k
(

t, ϕ
k
f (t, y, f)fσF

√

1 − ρ2, ϕ
k−1

(t, y, f) + D(t, y, f) − ϕ
k
(t, y, f)

)

.

(ii) The continuous-time valuation operator ϕ is market-consistent and actuarial, hence it is fair.

(iii) The hedging strategy which underlies the continuous-time valuation operator ϕ is given by

ϑ
∗
(t) = ϕ

J(t−)
y (t, Y (t), F (t))Y (t)

+ϕ
J(t−)
f

(t, Y (t), F (t))F (t)
σF

σY

ρ, 0 ≤ t ≤ T.

The hedging strategy is market-consistent and actuarial, hence it is fair.

Remark: We can call Φ an instantaneous actuarial risk margin.
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Continuous-time valuation operator

The insurer’s net asset value process:

NAV (t) = V
∗
B(t)− ϕ(t), 0 ≤ t ≤ T,

has the dynamics

dNAV (s) = NAV (s)rds+Φ(s)ds

−ϕ
J(s−)
f (s, Y (s), F (s))F (s)σF

√

1− ρ2dW2(s)

−
(

ϕ
J(s−)−1(s, Y (s), F (s)) +D(s, Y (s), F (s))− ϕ

J(s−)(s, Y (s), F (s))
)

dÑ(s),

The first integral models the non-hedgeable risk that the value of the claims

changes due to a change in the independent component of the risky asset F . The

integrand is the delta-hedging perfect replication strategy for the independent

component of the risky asset F ,

The second integral models the non-hedgeable risk that in the case of an

independent event of the policyholder’s death the insurer pays the death benefit

and revaluates the claims for the in-force policies. The integrand is the sum at risk

in the event of the policyholder’s death.
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Continuous-time valuation operator

Theorem

The continuous-time valuation operator has the representation:

ϕ
k(t, y, f) = E

Q̂

t,y,f,k

[

∫ T

t

e
−r(s−t)

dB(s) +

∫ T

t

e
−r(s−t)Φ(s)ds

]

,

(t, y, f) ∈ [0, T ]× (0,∞)× (0,∞), k ∈ {0, ..., n}.

The valuation operator values liabilities as the best estimate of the liability plus

the total actuarial risk margin for the liability:

ϕ = Fair V alue of B

= Best Estimate of B + Total Actuarial Risk Margin for B.
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Continuous-time valuation operator

The solvency position, the unwind of the risk margin and the profit recognition over the

duration of the portfolio:

At each time t ∈ [0, T ), the insurer must hold an additional capital determined by Φ(t) which protects the insurer

against adverse scenarios in the evolution of the non-hedgeable risks,

At time t = 0 the expected cost (the best estimate) of providing the additional capitals Φ till maturity of the insurance

portfolio is equal to EQ̂[
∫

T
0 e−rsΦ(s)ds],

As the time passes, the technical provision (the price ϕ of the benefit stream), the best estimate of the liability and the

cost of financing the future instantaneous actuarial risk margins are recalculated,

The instantaneous actuarial risk margins are released from the technical provision as the time passes and, on average,

they are not used to cover the losses since the realized loss on the hedgeable risk is always zero and the expected loss on

the non-hedgeable risks is also zero, both under P and Q̂,

The insurer earns, on average, a risk-free rate on the net asset value and the instantaneous actuarial risk margins

accumulated with the risk-free rate:

E[NAV (t + h)e
−rh

|Ft] = NAV (t) + E
[

∫

t+h

t
e
−ru

Φ(u)du|Ft

]

.
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