Modern design of life annuities in view of longevity and pandemics

Annamaria Olivieri

Università di Parma, Dipartimento di Scienze Economiche e Aziendali

annamaria.olivieri@unipr.it

Seminario del Comitato Scientifico dell'Ordine degli Attuari 30 giugno 2021

Annamaria Olivieri (UniPR)

Mortality/Longevity-Linked Annuities

Seminario Attuari 2021 1/33

Introduction & Motivation – I

Shift from DB to DC schemes

- In many countries (Pillar I and Pillar II)
- Most of the individual longevity and financial risks remain with individuals
- Individuals need to take decisions regarding their post-retirement income

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Introduction & Motivation – II

A number of post-retirement income products/arrangements

With different types and levels of guarantees

- Traditional, immediate life annuities
 - Longevity guarantee (lifelong payment) & financial guarantee (fixed or minimum annual amount)
- Variable annuities
 - Several guarantees available, typically financial
- Delayed and contingent life annuities (e.g., ALDA, RCLA)
 - Longevity guarantee at older ages only, possibly contingent on adverse scenarios
- Mortality/longevity-linked life annuities
 - Longevity risk sharing within an annuity, with partial guarantees
- Group Self-Annuitization (GSA), pooled annuities and tontine arrangements
 - Longevity risk sharing within a pool, without guarantees
- Self-annuitization (Income drawdown)
 - No guarantee

Introduction & Motivation – III

The annuity puzzle

- Under given assumptions, standard annuities represent the optimal post-retirement income solution ([Yaari, 1965])
- However: The annuity market is little (all over the world)

There is room for innovative solutions

In particular: Trade-off between cons & pros of annuities, in particular in view of the mortality/longevity dynamics

The standard longevity guarantee - I

Lifelong payment (fixed or minimum annual amount)

- Independent of: Individual's lifetime & average lifetime of the population (& returns on investments)
- Relying on mortality credits, whose amount is guaranteed

From the point of view of the provider

Idiosyncratic & aggregate longevity risk

🕈 minor 🛛 📢 major

- Long-term exposure to risk
- Pricing assumptions, and other aspects of the annuity design, chosen at issue, without following updates

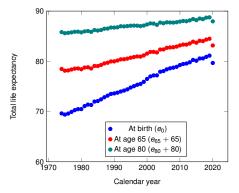
Loadings

Inflexible benefits (apart from participation to extra-returns)

Annamaria Olivieri (UniPR)

Mortality/Longevity-Linked Annuities

The standard longevity guarantee - II


From the point of view of the individual

- 🖒 Lifelong protection, guaranteed annual (minimum) amount
- No bequest (mortality credits)
- Irreversible decision
- Illiquid asset for the individual
- Perceived to be expensive
- Further downside: Possible mortality shocks

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

The mortality/longevity dynamics

The (total) life expectancy (Italy, males. Source: ISTAT)

What's next?

Annamaria Olivieri (UniPR)

Mortality/Longevity-Linked Annuities

Seminario Attuari 2021 7/33

A possible solution reconciling the (different) requirements of individuals and providers – I

Relax guarantees on mortality credits

- Mortality/longevity-linked annuity benefits
 - The benefit amount is allowed to fluctuate (down or up), depending on a given mortality/longevity experience
 - Guarantees are not (necessarily) excluded (for example: a minimum benefit amount)

A possible solution reconciling the (different) requirements of individuals and providers – II

Benefit at time t

$$b_t = b_{t-1} \cdot \operatorname{adj}_{(t-1,t)}$$
 every year

or

$$b_t = b_0 \cdot \operatorname{adj}_{(0,t)}$$
 every year

or

$$b_t = b_{t-k} \cdot \operatorname{adj}_{(t-k,t)}$$
 every k years

adj_{(t-1,t}), adj_{(0,t}), adj_{(t-k,t}): Adjustment coefficients at time t, expressing a mortality/longevity experience, respectively in (t − 1, t), (0, t) or (t − k, t)

Annamaria Olivieri (UniPR)

Mortality/Longevity-Linked Annuities

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

State of the art - I

Self-insured arrangements

- Group Self-Annuitization (GSA), pooled annuities and tontine arrangements
- They rely on mortality credits, which are not guaranteed

Literature

GSA: [Piggott et al., 2005], [Valdez et al., 2006], [Bravo et al., 2009], [Qiao and Sherris, 2013], [Boyle et al., 2015] Pooled annuities: [Stamos, 2008], [Donnelly et al., 2013], [Donnelly et al., 2014], [Donnelly, 2015] Tontine arrangements: [McKeever, 2009], [Baker and Peter Siegelman, 2010], [Sabin, 2010], [Milevsky, 2014], [Milevsky and Salisbury, 2015], [Milevsky and Salisbury, 2016], [Chen et al., 2019], [Weinert and Gründl, 2020]

State of the art - II

Insurance-based arrangements

- Mortality/longevity-linked life annuities
- Partially guaranteed mortality credits

Literature

[Lüthy et al., 2001], [de Melo, 2008], [Denuit et al., 2011], [Richter and Weber, 2011], [Maurer et al., 2013], [Denuit et al., 2015], [Weale and van de Ven, 2016], [Bravo and de Freitas, 2018], [Olivieri and Pitacco, 2020a], [Olivieri and Pitacco, 2020b]

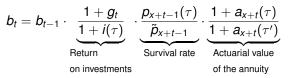
To define the adjustment coefficient

We need

- A mortality/longevity experience/index
- Quantities recording the longevity experience

Alternatives

	Portfolio/Indemnity-based	Index-based
Number of survivors or Survival rates (observed vs expected)	In the portfolio	In a reference population
Actuarial quantities	Required portfolio reserve vs Available assets	Actuarial value of the annuity with updated life tables


3

Indemnity vs index-based solutions

- Portfolio/pool experience
 - Indemnity-based solution
 - No basis risk for the provider
 - Subject to random fluctuations
 - Possibly subject to manipulations (or perceived as such)
 - Natural choice in self-insured arrangements
- Experience of a reference population
 - Index-based solution
 - Basis risk for the provider
 - Less subject to random fluctuations
 - Perhaps more trusted, as it is measured by an independent institution
 - Appropriate choice in insured arrangements
- (Projected) Life table
 - Index-based solution
 - Less subject to random fluctuations

Mortality/Longevity-linked annuity benefits

A general definition

- A life annuity immediate. One cohort. Entry time: 0. Entry age: x
- Technical basis (benchmark) chosen/revised at time τ, 0 ≤ τ ≤ t − 1
- *g_t*: Realized financial return in year (*t* 1, *t*)
- *i*(τ): Interest rate based on best-estimate assumptions at time τ

*p*_{x+t-1}(*τ*): Survival rate based on the best-estimate assumptions at time *τ*

⊖ benchmark survival rate

- \tilde{p}_{x+t-1} : Realised survival rate in year (t-1, t), in a given population
- a_{x+t}(τ), a_{x+t}(τ'): Actuarial value at time t of a unitary annuity, based on the best-estimate assumptions at time τ (τ'), 0 ≤ τ ≤ t − 1, 0 ≤ τ' ≤ t)

 Θ $a_{x+t}(\tau)$: benchmark annuity value

How to get there – I

Recursion for the reserve in year $(t - 1, t) \dots$ (One policy, in-force at time t - 1)

... According to the reserving basis at time t-1

$$\overbrace{b_{t-1} \cdot a_{x+t-1}(\tau)}^{\text{Reserve at time } t - 1} \cdot (1 + i(\tau)) = \underbrace{b_{t-1} \cdot (1 + a_{x+t}(\tau)) \cdot p_{x+t-1}(\tau)}_{\text{Payment + Beserve at time } t \text{ if alive}}$$

 \bigcirc Reserving basis chosen at time τ , $0 \le \tau \le t - 1$

How to get there – II

However

- If there is a financial linking: the return assigned to the reserve in year (t-1, t) is g_t (hopefully, higher than $i(\tau)$)
- If there is a longevity linking:
 - The survival rate is measured in a chosen population (either the portfolio or a reference population) $\Rightarrow \tilde{p}_{x+t-1}$ instead of $p_{x+t-1}(\tau)$

or

 The reserving basis in the actuarial value of the annuity at time *t* is updated to a later time τ' ⇒ a_{x+t}(τ') instead of a_{x+t}(τ), τ ≤ τ' ≤ t

Then

The actuarial balance is kept by adjusting the benefit amount to b_t

How to get there – III

Actuarial balance in year $(t - 1, t) \dots$ (One policy, in-force at time t - 1)

... in terms of the conditions applied to the annuitant

Reserve invested at time
$$t - 1$$

 $\underbrace{b_{t-1} \cdot a_{x+t-1}(\tau)}_{\text{"Assets" at time } t} \cdot (1 + g_t) = \underbrace{b_t \cdot (1 + a_{x+t}(\tau')) \cdot \tilde{p}_{x+t-1}}_{\text{Payment + Reserve at time } t, \text{ if alive}}$

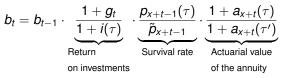
 $c b_t \stackrel{>}{\leq} b_{t-1}$

How to get there – IV

Benefit at time t

$$b_{t} = b_{t-1} \cdot \underbrace{\frac{\overbrace{a_{x+t-1}(\tau) \cdot (1+g_{t})}^{\text{Available assets}}}_{(1+a_{x+t}(\tau')) \cdot \tilde{p}_{x+t-1}}}_{(\text{Payment +) Required reserve}}$$

• Typical structure in self-insured arrangements or when no guarantee is provided (e.g., GSA)


Annamaria Olivieri (UniPR)

Mortality/Longevity-Linked Annuities

Seminario Attuari 2021 18/33

How to get there -V

Equivalently: Benefit at time t

- Appropriate structure in insured arrangements
- In this case, it is also appropriate to link the adjustment only to the survival rate or only to the actuarial value of the annuity ⇒ Some risk is retained by the provider
- Guarantees can be introduced by setting minimum / maximum values for the benefit amount the adjustment coefficients, the items of the adjustment coefficient, ...

Annamaria Olivieri (UniPR)

Mortality/Longevity-Linked Annuities

Targets of a mortality/longevity-linking arrangement

For the provider

- Default probability
- Business value
- Deviations in annual payouts and annual profits wrt a target
- Portfolio reserve vs available assets

• . . .

For the individual

- Fees
- Longevity guarantee
 - Duration of the annuity
 - Stability of the path of the benefit amounts

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Flexibility
- . . .

Some results – I

Basic parameters

- One cohort
- Initial age: x = 65. Maximum attainable age: $\omega = 100$
- No financial return, no financial risk (and no financial linking)
- Annuity immediate
- Stochastic mortality rate
- Premium loading charged at issue only

Some results - II

Arrangements

- Fixed benefit
- GSA arrangement
- Linking based on the survival rates
 - Mortality experience measured in a reference population (index-based linking)
 - Benchmark survival rate: either the best-estimate at time 0 or the latest best-estimate (time t 1)
 - Maximum age for benefit adjustment: x_{max} = 95
 - Maximum reduction of the benefit amount (in respect of the initial amount): 25%
 - No uplift in respect of the initial benefit
- Linking based on the actuarial value of the annuity
 - Benchmark actuarial value: either the best-estimate at time 0 or the latest best-estimate (time t - 1)
 - Other conditions as above

Adjustment every k = 1, 3, 5 years

Some results - III

Premium loading

• Assessed such that the provider's probability of loss is 10%, excluding basis risk

(the premium loading is then expressed as a % of the actuarial value of a unitary annuity, based on the best-estimate assumption at time 0)

	Benefit type	Moderate longevity risk	Major longevity risk	
FB	Fixed benefit	1.731%	5.647%	
L-SP $(t - k), k = 1$ L-SP $(t - k), k = 3$ L-SP $(t - k), k = 5$	Survival rate (Benchmark: BE k years before) Adjustment every k years	1.654% 1.572% 1.481%	5.472% 5.158% 4.848%	
	Actuarial value (Benchmark: BE k years before) Adjustment every k years	0.092% 0.185% 0.293%	0.219% 0.539% 0.892%	
L-SP(0), $k = 1$ L-SP(0), $k = 3$ L-SP(0), $k = 5$	Survival rate (Benchmark: BE at time 0) Adjustment every <i>k</i> years	0.052% 0.227% 0.384%	0.169% 0.714% 1.208%	
$ \frac{\text{L-AV}(0, t), k = 1}{\text{L-AV}(0, t), k = 1} \\ \text{L-AV}(0, t), k = 1 $	Actuarial value (Benchmark: BE at time 0) Adjustment every <i>k</i> years	-0.034% 0.017% 0.144%	-0.136% -0.027% 0.404%	
GSA	Group Self-Annuitization	0.000%	0.000%	

Some results – IV

Present Value of Future Profits and Business Value

- Annual profits are discounted in a market-consistent manner (in practice, in this implementation no discounting, as the interest rate is set to 0)
- PVFP^[ben]: from the benefit adjustment
- PVFP₀^[res]: from the need to update the reserve (including the reserving basis)
- PVFP^[load]: from the premium loading

Some results – V

• Moderate longevity risk, no basis risk

Arrangement	PVFP ₀	PVFP ^[ben] (as a %	PVFP ^[res] of the expect	PVFP ^[load] ted value of P	BV ₀ VFP ₀)
FB	1.677	- 0.198%	- 1.288%	101.486%	75.787%
L-SP $(t - k), k = 1$	1.656	0.071%	1.659%	98.270%	76.281%
L-SP $(t - k), k = 3$	1.595	0.123%	2.850%	97.028%	76.841%
L-SP $(t - k), k = 5$	1.529	0.224%	4.399%	95.376%	77.285%
	0.674	4.216%	82.258%	13.526%	96.542%
	0.683	3.841%	69.297%	26.862%	93.697%
	0.737	3.450%	57.164%	39.385%	90.945%
L-SP(0), $k = 1$	0.553	9.634%	80.957%	9.409%	97.766%
L-SP(0), $k = 3$	0.672	7.330%	59.129%	33.541%	92.243%
L-SP(0), $k = 5$	0.779	5.841%	45.184%	48.974%	88.717%
L-AV(0, t), $k = 1$	0.557	5.098%	100.996%	- 6.094%	96.151%
L-AV(0, t), $k = 3$	0.551	5.036%	91.878%	3.085%	96.733%
L-AV(0, t), $k = 5$	0.620	4.325%	72.532%	23.143%	94.392%

Annamaria Olivieri (UniPR)

Mortality/Longevity-Linked Annuities

Seminario Attuari 2021 25/33

イロト イヨト イヨト イヨト 三日

Some results – VI

۲	Major	longevity	risk,	no	basis	risk
---	-------	-----------	-------	----	-------	------

Arrangement	PVFP ₀	PVFP ^[ben] (as a %	PVFP ^[res] of the expect	PVFP ₀ ^[load] ted value of P	BV ₀ VFP ₀)
FB	5.131	- 0.149%	- 4.251%	104.400%	74.507%
L-SP $(t - k), k = 1$	5.052	- 0.044%	- 2.809%	102.853%	74.824%
L-SP $(t - k), k = 3$	4.856	0.046%	- 1.126%	101.080%	75.269%
L-SP $(t - k), k = 5$	4.663	0.171%	0.707%	99.122%	75.776%
L-AV $(t - k, t), k = 1$	1.794	4.551%	83.475%	11.973%	97.046%
L-AV $(t - k, t), k = 3$	1.951	4.102%	68.780%	27.118%	93.708%
L-AV $(t - k, t), k = 5$	2.166	3.675%	55.988%	40.337%	90.924%
L-SP(0), <i>k</i> = 1	1.645	10.021%	79.858%	10.121%	83.096%
L-SP(0), <i>k</i> = 3	2.010	7.612%	57.524%	34.864%	82.373%
L-SP(0), <i>k</i> = 5	2.336	6.071%	43.368%	50.561%	82.571%
L-AV(0, t), $k = 1$	1.661	5.492%	102.543%	- 8.035%	97.669%
L-AV(0, t), $k = 3$	1.585	5.638%	96.018%	- 1.656%	98.549%
L-AV(0, t), $k = 5$	1.827	4.738%	73.512%	21.750%	94.537%

Mortality/Longevity-Linked Annuities

Seminario Attuari 2021 26/33

Summary

- We address annuity designs in which the benefit is updated to the mortality/longevity experience
- A general framework provides several particular cases
- Experiences available in self-insured arrangements (GSA, tontines) support this kind of solutions
- Empirical investigations suggest that individuals might accept the chance of a benefit reduction in the future, if rewarded with a higher initial annuity rate (i.e., lower premium loading)
- Possible profit sharing, in case of a mortality shock
- Oritical issues:
 - Individual preferences and demand issues
 - · Cost of capital and value created for the provider
 - Pricing of the guarantees
 - Timing of the fees: Upfront vs periodic fees
 - Choice of the mortality model
 - Solidarity effects, in case of a heterogeneous population

• . . .

Many thanks for your kind attention!

Annamaria Olivieri (UniPR)

Mortality/Longevity-Linked Annuities

Seminario Attuari 2021 28/33

イロト イヨト イヨト イヨト 三日

References - I

Baker, T. and Peter Siegelman, P. (2010).

Tontines for the invincibles: Enticing low risks into the health insurance pool with an idea from insurance history and behavioral economics.

Wisconsin Law Review, 2010:79-120.

Boyle, P., Hardy, M., MacKay, A., and Saunders, D. (2015). Variable payout annuities. Technical report, Society of Actuaries.

ī.

Bravo, J. M. and de Freitas, N. E. M. (2018).

Valuation of longevity-linked life annuities. Insurance: Mathematics and Economics, 78:212–229.

Bravo, J. M., Real, P. C., and da Silva, C. P. (2009).

Participating life annuities incorporating longevity risk sharing arrangements. Paper prepared for submission to the scientific contest *Prémio Inovação Reforma – Programa Consciência Leve*, promoted by Grupo Caixa General de Depósitos.

Chen, A., Hieber, P., and Klein, J. K. (2019).

Tonuity: A novel individual-oriented retirement plan. *ASTIN Bulletin*, 49(1):5?30.

de Melo, E. F. L. (2008).

Valuation of participating inflation annuities with stochastic mortality, interest and inflation rates. AFIR2008 Colloquium.

References - II

Denuit, M., Haberman, S., and Renshaw, A. (2011). Longevity-indexed life annuities. North American Actuarial Journal, 15(1):97–111.

Denuit, M., Haberman, S., and Renshaw, A. (2015). Longevity-contingent deferred life annuities. Journal of Pension Economics and Finance, 14(03):315–327.

Donnelly, C. (2015).

Actuarial fairness and solidarity in pooled annuity funds. *ASTIN Bulletin*, 45(01):49–74.

Donnelly, C., Guillén, M., and Nielsen, J. (2013).

Exchanging uncertain mortality for a cost. Insurance: Mathematics & Economics, 52:65–76.

Donnelly, C., Guillén, M., and Nielsen, J. (2014). Bringing cost transparency to the life annuity market. Insurance: Mathematics & Economics, 56:14–27.

Lüthy, H., Keller, P., Bingswanger, K., and Gmür, B. (2001). Adaptive algorithmic annuities.

Mitteilungen der Schwizerischen Aktuarvereinigung, 2/2001:123–138.

References - III

Maurer, R., Mitchell, O., Rogalla, R., and Kartashov, V. (2013).

Lifecycle portfolio choice with systematic longevity risk and variable investment-linked deferred annuities. *The Journal of Risk and Insurance*, 80(3):649–676. DOI: 10.111/j.1539-6975.2012.01502.x.

McKeever, K. (2009).

A short history of tontines.

Fordham Journal of Corporate & Financial Law, 15(2):491–521.

Milevsky, M. A. (2014).

Portfolio choice and longevity risk in the late Seventeenth century: A re-examination of the first English tontine.

Financial History Review, 21(3):225-258.

Milevsky, M. A. and Salisbury, T. S. (2015).

Optimal retirement income tontines. Insurance: Mathematics and Economics, 64:91–105.

Milevsky, M. A. and Salisbury, T. S. (2016).

Equitable retirement income tontines: mixing cohorts without discriminating. ASTIN Bulletin, 46(3):571–604.

Olivieri, A. and Pitacco, E. (2020a).

Linking annuity benefits to the longevity experience: alternative solutions. Annals of Actuarial Science, 14(2):316?337.

References – IV

Olivieri, A. and Pitacco, E. (2020b).

Longevity-Linked Annuities: How to Preserve Value Creation Against Longevity Risk. Springer.

Piggott, J., Valdez, E., and Detzel, B. (2005).

The simple analytics of a pooled annuity fund. The Journal of Risk and Insurance, 72(3):497–520.

Qiao, C. and Sherris, M. (2013).

Managing systematic mortality risk with group self-pooling and annuitization schemes. *Journal of Risk and Insurance*, 80(4):949–974.

Richter, A. and Weber, F. (2011).

Mortality-Indexed annuities. managing longevity risk via product design. *The Journal of Risk and Insurance*, 15(2):212–236.

Sabin, M. J. (2010).

Fair tontine annuity. Available at SSRN.com (http://ssrn.com/abstract=1579932).

Stamos, M. Z. (2008).

Optimal consumption and portfolio choice for pooled annuity funds. *Insurance: Mathematics and Economics*, 43:56–68.

Valdez, E. A., Piggott, J., and Wanga, L. (2006). Demand and adverse selection in a pooled annuity fund.

Insurance: Mathematics and Economics, 39:251–266.

Mortality/Longevity-Linked Annuities

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

References – V

Weale, M. and van de Ven, J. (2016). Variable annuities and aggregate mortality risk. National Institute Economic Review, 237:R55–R61.

Weinert, J.-H. and Gründl, H. (2020).

The modern tontine. European Actuarial Journal.

Yaari, M. E. (1965).

Uncertain lifetime, life insurance, and the theory of the consumer.

The Review of Economic Studies, 32(2):137–150.

Annamaria Olivieri (UniPR)

Mortality/Longevity-Linked Annuities

Seminario Attuari 2021 33/33