Derisking the Black Box

How Explainable AI Validation help building (and actually using) Machine Learning systems we can trust

Incontro Annuale Comitato Regionale della Lombardia 17 dicembre 2021

Presenting today

Elena Pizzocaro

Partner, McKinsey & Company

elenapizzocaro

Machine learning related risks arise over various dimensions and create new challenges for risk management functions

Legal and regulatory	Using certain customer characteristics is illegal in some use cases/geographies (e.g. gender discrimination in motor insurance) – bias in model outcomes is the new focus for ML models					
risks	Legal consequences and regulatory fines can have a significant negative impact					
Reputational risks	Machine learning model outputs and actions that are publicly available (e.g. quoted prices, accidents of self-driving cars,) can lead to reputational risks					
	Damaged reputation can have impact in various ways (e.g., revenue loss, loss of talent,)					
Model	Higher risks of overfitting ML models, leading to poor performance in production					
performance risks	Self-learning algorithms can suffer performances drops in the course of deployment depending on intake of new training data					
Operational risks	Self learning algorithms require frequent data feeds – data pipelines need to be constructed and quality of data monitored continuously, e.g. to detect anomalies like changes in data definition in sub-systems to avoid underperformance or breakage					
	Overly complex model landscape can lead to inefficiencies and loss of control					

Extended approach to Model Validation

Extended approach to validation and monitoring of models including use of new tools and techniques where required

Explainable AI (XAI)

New methods able to shed light on model outputs both at the individual and global level

Example of extended Model validation framework

Similarity to traditional validation I Identical Some modifications New element

Dimensions	Elements						
	A	B	C	D	•	ſ	G
1 Model environment	Intended use(s)	Intended domain of applicability	Model requirement(s)	Model specification(s)			
2 Input	Development data set	Quality	Treatment(s) & assumption(s)	Input model(s)	Feature engineering		
3 Model development process	Theory	Modeling techniques	Modeling assumption(s)	Hyper- parameters			
4 Output	Accuracy	Precision	Robustness	Business operational Indicators	Interpretability	Bias	
5 Implementation	System documentation	Production environment	Data import process	Processing code	Report generation	Implementation controls	Scalability
6 Ongoing monitoring	Ongoing monitoring plan coverage	Program execution	Escalation process	Metrics and acceptance criteria			
7 Reporting & use	Report(s) contents	Model effective use(s)	Output(s) adjustment				
8 Model governance	Review Plans & Controls	Model Risk Scoring					

Extended approach to Model Validation

Extended approach to validation and monitoring of models including use of new tools and techniques where required

Explainable AI (XAI)

New methods able to shed light on model outputs both at the individual and global level

Machine Learning models have been increasingly embedded in business decision making

Do we need interpretable or high performing models?

Need to fully understand how the model works to trust it

Predictive performance in real-life evaluation trumps interpretability

Do we need interpretable or high performing models?

2. A.I. vs M.D, Siddhartha Mukherjee

How do you achieve model explainability?

#1: (Traditionally)

Create easy-to-explain features

Domain knowledge, low dimensional datasets

#2: (State of the art methods)Explain each sample post-hoc

Integrated explainability algorithms

'Explainable AI' (XAI) bridges the gap between 'black-box' Machine Learning models and the users

XAI methods work to shed light on model outputs both at the individual and global level

Images adapted from: https://www.oreilly.com/learning/introduction-to-local-interpretable-model-agnostic-explanations-lime

Different examples of integrated explainability

4. QuantumBlack

XAI is relevant to several types of users in insurance

Agents	Identifies leads with greater confidence and the preferred channel (email, phone, etc.) Better conversations with customers Generates additional business insights for strategy, product design, marketing, etc.					
Commercial strategist						
Risk	Uses XAI to ensure regulatory compliance					
manager	Reviews population cohorts to identify sources of bias in the model					
Actuaries	Improves model performance by:					
	 Collecting input from business experts 					
	 Analysing misclassified examples 					

How explainability is key in adopting AI in actuarial problems (e.g. pricing, reserving)

Identify drivers of deviances between ML models and traditional actuarial methods and understand structural/exceptional perturbations

Validate business rational underlying estimates, and correct potential bias

Overcome internal resistances in adopting the advanced models to assist the business-as-usual (e.g., open/closed file reviews)