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Machine learning related risks arise over various dimensions and 
create new challenges for risk management functions

Self learning algorithms require frequent data feeds – data pipelines need to be constructed and quality 
of data monitored continuously, e.g. to detect anomalies like changes in data definition in sub-systems 
to avoid underperformance or breakage

Overly complex model landscape can lead to inefficiencies and loss of control

Operational 
risks

Higher risks of overfitting ML models, leading to poor performance in production

Self-learning algorithms can suffer performances drops in the course of deployment depending on 
intake of new training data

Model 
performance 
risks

Machine learning model outputs and actions that are publicly available (e.g. quoted prices, accidents of 
self-driving cars, …) can lead to reputational risks

Damaged reputation can have impact in various ways (e.g., revenue loss, loss of talent, …)

Reputational 
risks

Using certain customer characteristics is illegal in some use cases/geographies (e.g. gender 
discrimination in motor insurance) – bias in model outcomes is the new focus for ML models

Legal consequences and regulatory fines can have a significant negative impact 

Legal and 
regulatory 
risks

Source: McKinsey, Risk Dynamics
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Extended approach 
to Model Validation

Extended approach to validation and monitoring of models 
including use of new tools and techniques where required

Explainable AI (XAI) New methods able to shed light on model outputs both at the 
individual and global level

Derisking the use of AI and ML with a twofold approach
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Similarity to traditional validation Identical Some modifications New element

Dimensions Elements
A B C D E F G

Intended  domain of  
applicability

Model  
requirement(s)

Model  
specification(s)

Development  data 
set Quality Treatment(s) &  

assumption(s) Input model(s) Feature  engineering

Theory Modeling  techniques Modeling  
assumption(s) Hyper- parameters

Accuracy Precision Robustness Business  operational  
Indicators Interpretability Bias

System  
documentation

Production  
environment Data import  process Processing  code Report  generation Implementation  

controls

Intended use(s)

Scalability

Ongoing  monitoring 
plan  coverage Program  execution Escalation  process Metrics and  

acceptance  criteria

Report(s)  contents Model effective  
use(s) Output(s)  adjustment

Review Plans &  
Controls Model Risk  Scoring

Model  environment1

Input2

Model development  
process

3

Output4

Implementation5

Ongoing monitoring6

Reporting & use7

Model governance8

Example of extended Model validation framework

Source: McKinsey, Risk Dynamics
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Derisking the use of AI and ML with a twofold approach

Extended approach 
to Model Validation

Extended approach to validation and monitoring of models 
including use of new tools and techniques where required

Explainable AI (XAI) New methods able to shed light on model outputs both at the 
individual and global level
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Traditional decision making

Insights

Domain 
expertise

Facts & 
information

Decision-making with analytics

Black box model

Variables V1     V2     .     .     .    .     .    .     .     .     .

Domain
expertise

Diverse
data sources

Insights

Machine Learning models have been increasingly embedded in 
business decision making

Source: McKinsey, QuantumBlack
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Need to fully understand how the model works 
to trust it

Predictive performance in real-life evaluation 
trumps interpretability

Regulators Analytics 
experts

Advocates of interpretability

Corporate 
decision 
makers

Users Brokers

Advocates of performance

Large scale 
institutions

Do we need interpretable or high performing models? 

From The Mythos of Model Interpretability Zachary C. Lipton

Source: McKinsey, QuantumBlack

https://arxiv.org/find/cs/1/au:+Lipton_Z/0/1/0/all/0/1
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What is their argument? What is their argument?2
There is a “right to explanation”1

Sometimes a single error can incur enormous costs
Sensitive information (race, gender) may be misused or 
inferred by models 

A powerful model is more profitable to an understandable 
one
Human decision-makers can be biased too
Machine Learning can be more accurate at predicting than 
human experts 

Do we need interpretable or high performing models?

1. The Mythos of Model Interpretability Zachary C. Lipton
2. A.I. vs M.D, Siddhartha Mukherjee

Regulators Analytics 
experts

Advocates of interpretability

Corporate 
decision 
makers

Users Brokers

Advocates of performance

Large scale 
institutions

Source: McKinsey, QuantumBlack

https://arxiv.org/find/cs/1/au:+Lipton_Z/0/1/0/all/0/1
https://www.newyorker.com/contributors/siddhartha-mukherjee
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How do you achieve model explainability?

#1: (Traditionally) 
Create easy-to-explain features

Domain knowledge, low 
dimensional datasets

#2: (State of the art methods)
Explain each sample post-hoc

Integrated explainability
algorithms
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� Very high predictive power

� Limited input from human expertise

� Lack of transparency hurts adoption

� Increased ethical / regulatory risks

'Explainable AI' (XAI) bridges the gap between ’black-box’ Machine 
Learning models and the users

ML model 
‘black box’

Output

End user

Data

� Very high predictive power

� Trust in model output enables adoption

� Intelligence augmentation, combining human and 
machine insight

� Addressing regulatory / ethical requirements

Explainable 
AI (XAI)

ML Model

Augmented 
Intelligence

End 
user

Data

'Explainable AI''Black-box’ Machine Learning

Source: McKinsey, QuantumBlack
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Age 28 Credit 
score High 3 
years contract

Phone Age

Credit Score

Contract length

Explainer
(LIME)

Model Datapoint and 
prediction

Explanation

Human makes 
decision

Explain why the 
model generates 
this output for one 
particular instance

Individual 
explanations

Model Human makes 
decision

Dataset and 
prediction

Pick step Explanations

Pick representative 
examples from a 
dataset or illustrate 
global-level 
relationships/ 
patterns learnt by 
the model

Global 
explanations

XAI methods work to shed light on model outputs both at the 
individual and global level

Images adapted from: https://www.oreilly.com/learning/introduction-to-local-interpretable-model-agnostic-explanations-lime
Source: McKinsey, QuantumBlack

https://www.oreilly.com/learning/introduction-to-local-interpretable-model-agnostic-explanations-lime
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Figure 3: Toy example to present intuition for LIME.

The black-box model’s complex decision function f
(unknown to LIME) is represented by the blue/pink

background, which cannot be approximated well by

a linear model. The bold red cross is the instance

being explained. LIME samples instances, gets pre-

dictions using f , and weighs them by the proximity

to the instance being explained (represented here

by size). The dashed line is the learned explanation

that is locally (but not globally) faithful.

distance function D (e.g. cosine distance for text, L2 distance
for images) with width �.

L(f, g,⇡x) =
X

z,z02Z

⇡x(z)
�
f(z)� g(z0)

�2
(2)

For text classification, we ensure that the explanation is
interpretable by letting the interpretable representation be
a bag of words, and by setting a limit K on the number of
words, i.e. ⌦(g) = 11[kwgk0 > K]. Potentially, K can be
adapted to be as big as the user can handle, or we could
have di↵erent values of K for di↵erent instances. In this
paper we use a constant value for K, leaving the exploration
of di↵erent values to future work. We use the same ⌦ for
image classification, using “super-pixels” (computed using
any standard algorithm) instead of words, such that the
interpretable representation of an image is a binary vector
where 1 indicates the original super-pixel and 0 indicates a
grayed out super-pixel. This particular choice of ⌦ makes
directly solving Eq. (1) intractable, but we approximate it by
first selecting K features with Lasso (using the regularization
path [9]) and then learning the weights via least squares (a
procedure we call K-LASSO in Algorithm 1). Since Algo-
rithm 1 produces an explanation for an individual prediction,
its complexity does not depend on the size of the dataset,
but instead on time to compute f(x) and on the number
of samples N . In practice, explaining random forests with
1000 trees using scikit-learn (http://scikit-learn.org) on a
laptop with N = 5000 takes under 3 seconds without any
optimizations such as using gpus or parallelization. Explain-
ing each prediction of the Inception network [25] for image
classification takes around 10 minutes.
Any choice of interpretable representations and G will

have some inherent drawbacks. First, while the underlying
model can be treated as a black-box, certain interpretable
representations will not be powerful enough to explain certain
behaviors. For example, a model that predicts sepia-toned
images to be retro cannot be explained by presence of absence
of super pixels. Second, our choice of G (sparse linear models)
means that if the underlying model is highly non-linear even
in the locality of the prediction, there may not be a faithful
explanation. However, we can estimate the faithfulness of

Algorithm 1 Sparse Linear Explanations using LIME

Require: Classifier f , Number of samples N
Require: Instance x, and its interpretable version x0

Require: Similarity kernel ⇡x, Length of explanation K
Z  {}
for i 2 {1, 2, 3, ..., N} do

z0i  sample around(x0)
Z  Z [ hz0i, f(zi),⇡x(zi)i

end for

w  K-Lasso(Z,K) . with z0i as features, f(z) as target
return w

the explanation on Z, and present this information to the
user. This estimate of faithfulness can also be used for
selecting an appropriate family of explanations from a set of
multiple interpretable model classes, thus adapting to the
given dataset and the classifier. We leave such exploration
for future work, as linear explanations work quite well for
multiple black-box models in our experiments.

3.5 Example 1: Text classification with SVMs
In Figure 2 (right side), we explain the predictions of a
support vector machine with RBF kernel trained on uni-
grams to di↵erentiate “Christianity” from “Atheism” (on a
subset of the 20 newsgroup dataset). Although this classifier
achieves 94% held-out accuracy, and one would be tempted
to trust it based on this, the explanation for an instance
shows that predictions are made for quite arbitrary reasons
(words “Posting”, “Host”, and “Re” have no connection to
either Christianity or Atheism). The word “Posting” appears
in 22% of examples in the training set, 99% of them in the
class “Atheism”. Even if headers are removed, proper names
of prolific posters in the original newsgroups are selected by
the classifier, which would also not generalize.
After getting such insights from explanations, it is clear

that this dataset has serious issues (which are not evident
just by studying the raw data or predictions), and that this
classifier, or held-out evaluation, cannot be trusted. It is also
clear what the problems are, and the steps that can be taken
to fix these issues and train a more trustworthy classifier.

3.6 Example 2: Deep networks for images
When using sparse linear explanations for image classifiers,
one may wish to just highlight the super-pixels with posi-
tive weight towards a specific class, as they give intuition
as to why the model would think that class may be present.
We explain the prediction of Google’s pre-trained Inception
neural network [25] in this fashion on an arbitrary image
(Figure 4a). Figures 4b, 4c, 4d show the superpixels expla-
nations for the top 3 predicted classes (with the rest of the
image grayed out), having set K = 10. What the neural
network picks up on for each of the classes is quite natural
to humans - Figure 4b in particular provides insight as to
why acoustic guitar was predicted to be electric: due to the
fretboard. This kind of explanation enhances trust in the
classifier (even if the top predicted class is wrong), as it shows
that it is not acting in an unreasonable manner.

LIME (Locally Interpretable Model-agnostic Explanations)1

L2X (Learn to Explain)3

SHAP (Shapley Additive exPlanations)2

EMAP (Explanations by 
Minimum 
Adversarial 
Perturbations)4

Different examples of integrated explainability

1.  Ribeiro et al., "Why Should I Trust You?": Explaining the Predictions of Any Classifier, https://arxiv.org/abs/1602.04938
2.  Lei et al., Rationalizing Neural Predictions, https://arxiv.org/abs/1602.04938
3.  Letham et al., Interpretable classifiers using rules and Bayesian analysis: Building a better stroke prediction model, https://arxiv.org/abs/1511.01644
4.  QuantumBlack

Source: McKinsey, QuantumBlack

https://arxiv.org/abs/1602.04938
https://arxiv.org/abs/1602.04938
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XAI is relevant to several types of users in insurance

Agents Identifies leads with greater confidence and the preferred channel (email, phone, etc.)

Better conversations with customers

Commercial 
strategist

Generates additional business insights for strategy, product design, marketing, etc.

Risk 
manager

Uses XAI to ensure regulatory compliance

Reviews population cohorts to identify sources of bias in the model

Actuaries Improves model performance by:
� Collecting input from business experts
� Analysing misclassified examples

Source: McKinsey
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How explainability is 
key in adopting AI in 
actuarial problems 
(e.g. pricing, 
reserving)

Identify drivers of deviances between ML models and 
traditional actuarial methods and understand 
structural/exceptional perturbations

Validate business rational underlying estimates, and correct 
potential bias 

Overcome internal resistances in adopting the advanced 
models to assist the business-as-usual (e.g., open/closed 
file reviews)

Source: McKinsey


