Principles and models for the Embedded Value calculation

Trieste – February 2012

1. Methodological Aspects: from the Traditional to the Market Consistent Embedded Value

2. CFO Principles: the MCEV framework

3. Stochastic scenarios: calibration and validation

4. Asset and Liabilities valuation: looking for a consistent approach through the risk free definition

5. The MCEV calculation: a simple and "practical" example

AGENDA

1. Methodological Aspects: from the Traditional to the Market Consistent Embedded Value

Getting to grips with Embedded Value

- Why not just using the Balance Sheet?
- Basic definitions: Embedded Value

From Traditional to Market Consistent EV

- Value of in-force business (VIF)
- Traditional EV: technical aspects
- Limits of traditional Embedded Value
- CFO Forum and EEV Principles
- Market Consistent Embedded Value

AGENDA

1. Methodological Aspects: from the Traditional to the Market Consistent Embedded Value

Getting to grips with Embedded Value

- Why not just using the Balance Sheet?
- Basic definitions: Embedded Value

From Traditional to Market Consistent EV

- Value of in-force business (VIF)
- Traditional EV: technical aspects
- Limits of traditional Embedded Value
- CFO Forum and EEV Principles
- Market Consistent Embedded Value

Life business: characteristics

Characteristics of life business:

- long duration of contracts
- uncertain payments to policyholders ("if", "when" and "how much")
- presence of guarantees for policyholders
 - minimum death benefits
 - minimum guaranteed rates
- dependence on economic variables ("financial")
 - interest rates, equity returns
 - inflation
- dependence on operating variables ("non financial")
 - mortality
 - lapses
 - expenses
- dependence on accounting practices
 - deferred acquisition costs
 - local / IFRS accounting

Measuring the value from a SH's perspective

What is the Balance Sheet missing to recognise?

The difference between MV and BV of assets:

- UGLs on Assets backing NAV
- UGLs on Assets backing Liabilities
- Split of UGLs between SHs and PHs

The prudent basis used in pricing and reserving:

• intrinsic value in the reserves

The use of SH's capital (and the fact taxes are to be paid on it), which must be remunerated:

 cost of holding a (regulatory or internally determined) solvency capital

Measuring the value from a SH's perspective

What is the P&L missing to recognise?

P&L result is not necessarily a valid indicator of value creation, e.g.:

1. P&L high profit but value destruction

- High lapses in one year bring high profits due to surrender penalties, but...
- Loss of stream of future profits expected from the contracts that lapsed is higher than the profit of the year;

2. P&L loss but value creation

- High new business volumes in one year bring high acquisition expenses with consequent losses, but...
- Stream of future profits expected from the new contracts is higher than the loss of the year

Measuring the value from a SH's perspective

What is the P&L missing to recognise?

Premiums are not necessarily a valid indicator of value creation:

- low volumes high margins
- high volumes low margins
- duration of contracts

✓ low surrender penalties – high surrenders

- ✓ high surrender penalties low surrenders
- financial options and g'tees
- solvency requirement

It is the **VALUE of the PREMIUMS** that actually matters, taking into account the cost of the solvency margin

Embedded Value: the strengths

Embedded value:

- is a value-based measure
- highlights the value created, its drivers and timing of emergence
- analyses the differences between assumptions and reality
- allows international comparisons, not depending on statutory accounting
- provides a value for new business (i.e. business sold during the year)

AGENDA

1. Methodological Aspects: from the Traditional to the Market Consistent Embedded Value

Getting to grips with Embedded Value

- Why not just using the Balance Sheet?
- Basic definitions: Embedded Value

From Traditional to Market Consistent EV

- Value of in-force business (VIF)
- Traditional EV: technical aspects
- Limits of traditional Embedded Value
- CFO Forum and EEV Principles
- Market Consistent Embedded Value

Value of a life insurance company

Adjusted net asset value

> **DEFINITION**:

Company's published net assets adjusted to reflect the market value of the related backing assets

ANAV is equal to the sum of:

- <u>Net Asset Value</u> (shareholders' equity)
- <u>adjustments to Net Asset Value</u> (after taxes and PH participation)
 - unrealised gains and losses (+/-)
 - intangibles (start up costs, Deferred Acquisition Costs, ...) (-)
 - revaluation of participated companies (+)
 - cross participations (-)

Value of in-force (VIF)

> **DEFINITION**:

Present value at valuation date of future industrial profits (after taxes and reinsurance) expected to emerge from all contracts existing at valuation date, after allowance for the cost of financial guarantees and options, the cost of non financial risks and the cost of holding the required capital

value "implicit" in the contracts already in-force

AGENDA

1. Methodological Aspects: from the Traditional to the Market Consistent Embedded Value

Getting to grips with Embedded Value

- Why not just using the Balance Sheet?
- Basic definitions: Embedded Value

From Traditional to Market Consistent EV

- Value of in-force business (VIF)
- Traditional EV: technical aspects
- Limits of traditional Embedded Value
- CFO Forum and EEV Principles
- Market Consistent Embedded Value

Traditional VIF

GENERAL VIF DEFINITION:

Present value at valuation date of future industrial profits (after taxes and reinsurance) expected to emerge from all contracts existing at valuation date, after allowance for the cost of financial guarantees and options, the cost of non financial risks and the cost of holding the required capital

To be noted:

under TEV approach, the cost of financial guarantees and options and the cost of non financial risks are not taken into account explicitly (but only implicitly within the discount rate)

Traditional VIF definition

TRADITIONAL VIF DEFINITION:

Present value, at valuation date, **of future industrial profits** (after taxes and reinsurance) expected to emerge from all contracts existing at valuation date, taking into account the **cost of holding the capital**

PVFP calculation: main aspects

> **PVFP:** Present value of future **industrial profits**, after taxes and reinsurance

✓ INDUSTRIAL PROFITS: technical profits + financial profits

- **technical profits:** mortality profits + surrender profits + loading profits
- financial profits: investment income technical interests (i.e. minimum guaranteed + revaluations)

How to calculate the PVFP

✓ Database

- Info regarding all the policies in the portfolio at valuation date
- ✓ Other Issues
 - Impact of DAC
 - Reinsurance
 - Contingency Reserves

- ✓ Future Assumptions
 - Economic assumptions:
 - Investment returns
 - taxation rate
 - Operating assumptions:
 - Lapses
 - Mortality
 - Maintenance Expenses
 - Discount Rate

Projection of future profits: demographic analysis

Demographic Analysis

	Policies fully	First	Surrender	Maturity	Paid-Up	Paid-Up	Paid-Up	Paid-Up	Paid-Up
Year	in force	Elimination			New	in force	Elimination	Surrender	Maturity
	-								
2010	786,319	1,484	24,560	34,750	7,082	-	5	46	36
2011	718,444	1,407	20,392	29,309	7,305	6,995	15	183	170
2012	660,030	1,337	17,268	30,859	7,038	13,932	26	317	320
2013	603,528	1,247	15,203	30,647	6,348	20,307	36	431	512
2014	550,084	1,152	13,309	34,709	5,278	25,675	45	508	794
2015	495,636	1,076	11,577	28,305	4,067	29,606	51	545	1,101
2016	450,611	1,025	10,088	28,195	3,151	31,976	56	545	1,313
2017	408,151	966	8,731	31,497	2,405	33,213	59	520	1,608
2018	364,553	903	7,434	27,472	1,861	33,431	61	481	1,586
2019	326,882	859	6,250	28,302	1,437	33,165	62	422	2,004
2020	290,033	817	5,128	27,443	1,098	32,114	61	354	2,360
2021	255,548	779	4,354	27,115	830	30,437	60	278	2,743
2022	222,470	734	3,805	27,788	612	28,185	57	208	3,296
2041	2,409	72	9	-	-	-	-	-	-
2042	2,329	76	8	-	-	-	-	-	-
2043	2,244	46	5	1,488	-	-	-	-	-
2044	706	10	1	695	-	-	-	-	-
	-	-	-	-	-	-	-	-	-

Projection of future profits: P&L account

Gross Profit and Loss Account

	Premiums	Reserves	Investment	Reserves	Payments	Commissions	Expenses	Gross
Year		Incoming	Income	Outgoing				Result
								1,384
2010	709	6,109	266	6,327	556	1	28	172
2011	660	6,327	280	6,510	557	1	27	172
2012	612	6,510	292	6,610	610	1	25	167
2013	566	6,610	301	6,655	634	1	24	163
2014	520	6,655	299	6,569	728	1	22	153
2015	474	6,569	333	6,487	693	1	21	175
2016	431	6,487	327	6,351	716	1	19	159
2017	389	6,351	318	6,115	777	1	18	148
2018	350	6,115	305	5,862	754	1	16	136
2019	312	5,862	291	5,539	786	1	15	125
2020	275	5,539	272	5,168	791	1	14	113
2021	239	5,168	253	4,760	787	1	12	101
2022	205	4,760	231	4,299	796	1	11	89
2041	3	189	11	193	7	-	0	3
2042	3	193	11	196	7	-	0	4
2043	1	196	6	36	164	-	0	2
2044	-	36	1	-	37	-	0	0
	-	-	-	-	-	-	-	-

Projection of future profits: from gross to industrial results

PVFP							
				U't			
Gross	Reinsurance	Before Tax	Taxation	n Industrial			
Result	Result	Industrial Profit		Profit			
1,384	- 343	1,042	398	643			
172	- 36	136	- 52	84			
172	- 46	126	- 48	78			
167	- 43	125	- 48	77			
163	- 40	123	- 47	76			
153	- 37	116	- 44	72			
175	- 48	127	- 49	78			
159	- 43	116	- 44	72			
148	- 39	108	- 41	67			
136	- 36	100	- 38	62			
125	- 33	92	- 35	57			
113	- 29	84	- 32	52			
101	- 25	76	- 29	47			
89	- 22	68	- 26	42			
3	-	3	- 1	2			
4	-	4	- 1	2			
2	-	2	- 1	1			
0	-	0	- 0	0			
-	-	-	-	-			

Present value of future profits (PVFP)

$$PVFP = \frac{84}{(1+7.25\%)} + \frac{78}{(1+7.25\%)^2} + \frac{77}{(1+7.25\%)^3} + \frac{76}{(1+7.25\%)^4} + \dots = 78 + 68 + 62 + 58 + \dots = 643$$

AGENDA

1. Methodological Aspects: from the Traditional to the Market Consistent Embedded Value

Getting to grips with Embedded Value

- Why not just using the Balance Sheet?
- Basic definitions: Embedded Value

From Traditional to Market Consistent EV

- Value of in-force business (VIF)
- Traditional EV: technical aspects
- Limits of traditional Embedded Value
- CFO Forum and EEV Principles
- Market Consistent Embedded Value

Future projections: assumptions

"Best Estimate" assumptions

- determined by each Company at the valuation date, having regard to past, current and expected future experience and to any other relevant data
- set within the context of a going concern (i.e. new business will continue to be written)

> Asset Mix backing mathematical reserves

(equities, properties, corporate bonds, government bonds...) RISK FREE (10-y AAA Government bond)
GOVERNMENT BONDS (risk free*)
CORPORATE BONDS

(risk free + spread(1) for liquidity premium)

EQUITIES (risk free + spread(2))
PROPERTIES (risk free + spread(3))

Long term Future Investment Return

➢UGLs on equities

(assumed realisation: 5 years)

>UGLs on properties

(assumed realisation: whole projections)

UGLs on bonds

(assumed realisation: duration)

Risk Discount Rate (RDR) risk free + Spread(4)

Future Investment Return (UGLs included)

Example: Generali

Return on Equities= spread	1 2.90% on AA	Retur	Return on Equities= spread 2.90%					
Return on Property= spread	d 1.15% on AA	Return	Return on Properties = spread 1.15%					
Best-estimate economic assumptions as at 31 December 2009								
	Italy	Germany	France	CEE	RoE	RoW		
10 y Government Bond	4.02%	3.44%	3.57%	4.55%	3.46%	5.54%		
Equity Total Return 6.34%		6.34%	6.34%	6.51%	6.11%	8.03%		
Property Total Return 4.59%		4.59%	4.59%	5.41%	3.77%	6.13%		
· · ·								

Source: Generali – Life Embedded Value 2009 – Supplementary Information

The **discount rate** is the **return offered** to a shareholder on his investment in the company

Risk, apparently ignored in a deterministic traditional approach, is instead already taken into account via a discount rate higher than the risk free rate: *risk free + risk premium*.

But how was the risk premium calculated?

The risk premium:

- should depend on the company riskiness
- should depend on the line of business
- should be different between VIF, ANAV and Goodwill

but...

- in the traditional deterministic approach it is not determined on a scientific basis, but based on market practice (range between 2.5%-4.0%)
- it is typically set equal to the equity risk premium
- same risks could be valued differently depending on the prudentiality of the company

Demographic assumptions

- Mortality: Company experience, where available
- **Surrenders**: Company experience, where available
- If not available?
- Market experience with possible prudential corrections

Further difficulties in setting demographic assumptions when:

- data on past experience is unavailable/insufficient for a specific product;
- rates experienced in the past years are not deemed to be valid as long term assumptions (especially for surrenders rates, which strongly depend on the economic environment)

Cost of capital

Cost of Capital: Cost/Loss of interest due to holding the capital

Within TEV valuation, the amount of capital (C) is typically set equal to the level of **minimum solvency margin**

Cost of capital

	PVFP - CoC formula							
CoC	C t * r	PVFP - CoC						
Cost of	Required Return	After Tax Return	Industrial Profit					
Solvency Margin	on Solvency Margin	on Solvency Margin	after Cost of SM					
55	148	93	588					
6	16	10	78					
6	17	10	72					
6	17	11	71					
6	17	11	70					
6	17	11	65					
6	17	10	72					
6	16	10	65					
6	16	10	61					
6	15	9	56					
5	14	9	52					
5	13	8	47					
5	12	8	42					
4	11	7	37					
0	0	0	2					
0	0	0	2					
0	0	0	1					
0	0	0	0					
-	-	-	-					

AGENDA

1. Methodological Aspects: from the Traditional to the Market Consistent Embedded Value

Getting to grips with Embedded Value

- Why not just using the Balance Sheet?
- Basic definitions: Embedded Value

From Traditional to Market Consistent EV

- Value of in-force business (VIF)
- Traditional EV: technical aspects
- Limits of traditional Embedded Value
- CFO Forum and EEV Principles
- Market Consistent Embedded Value

TEV methodology: technical limits

Technical limits

- 1. Subjective choice of Risk Discount Rate (RDR)
- 2. Subjective choice of financial assumptions
- 3. Indirect allowance for financial guarantees
- 4. Capitalisation of asset risk premium

TEV methodology: 1) subjective choice of RDR

RDR should reflect

- shareholder's expected return
- level of risk in the business at each valuation date

Risk Margin in RDR is NOT actively linked to risk

- it usually reflects market practice
- use of similar risk margins between companies rather than active differentiation on the basis of the risks being run ("herding" tendency)

TEV methodology: 2) subjective choice of financial assumptions ³⁴

Example n°1: Capitalisation product with profit sharing = 80% of financial result Company A and B: same asset mix but **different financial assumptions**

\rightarrow the higher the financial assumptions, the higher the value

TEV methodology: 3) indirect allowance for financial guarantees ³⁵

Traditional VIF calculation

- <u>explicitly</u> captures the value of "in the money" guarantees to the extent that they have impact on projected profits (Intrinsic Value)
- <u>implicitly</u> allows, in the RDR, for the possibility that guarantees move (further) into the money (**Implicit allowance for Time Value of FG**)

TEV methodology: 3) indirect allowance for financial guarantees

Example n°2: Capitalisation product with profit sharing = 80% of financial result

Company A and B: same asset mix and financial assumptions but different guarantee for PH

→ Same value for companies running different risks

When best estimate assumptions are higher than guarantees, the cost of financial guarantees is not explicitly captured
TEV methodology: 4) capitalisation of asset risk premium

Example n°3: Capitalisation product with profit sharing = 80% of financial result Company A and B: same financial assumptions, same guarantees but **different asset mix**

\rightarrow The riskier the assets, the higher the value

In Traditional EV, the RDR is an input and is not adjusted to reflect the the actual risk profile of the company

TEV methodology: 4) capitalisation of asset risk premium

Traditional EV capitalises asset risk premiums:

immediate recognition, at valuation date, of future margins expected to compensate for the assumed investment risk

100 € of equities is worth more than 100 € of bonds

In a traditional environment, an investor can:

borrow 100 € at 5% to be repaid in a year's time
 invest the proceeds in an equity with average return of 10% in a year's time
 FREE ARBITRAGE:

AGENDA

1. Methodological Aspects: from the Traditional to the Market Consistent Embedded Value

Getting to grips with Embedded Value

- Why not just using the Balance Sheet?
- Basic definitions: Embedded Value

From Traditional to Market Consistent EV

- Value of in-force business (VIF)
- Traditional EV: technical aspects
- Limits of traditional Embedded Value
- CFO Forum and EEV Principles
- Market Consistent Embedded Value

The CFO Forum is...

- a high level discussion group
- founded in 2002
- focused on:
 - new regulations for insurers
 - increase in transparency for investors
 - improving consistency of information reported
- with wide representation from major European-centred insurance groups

The CFO Forum is...

Aegon	CNP	ING	Prudential
Allianz	Fortis	Legal & General	Scottish Widows
Aviva	Generali	Mapfre	Standard Life
AXA	Hannover Re	Munich Re	Swiss Re
BNP Paribas	IF P&C	Old Mutual	Zurich FS

CFO Forum and EEV Principles

- In May 2004, the CFO Forum published the European Embedded Value Principles and member companies agreed to adopt EEVP from 2006 (with reference to 2005 financial year)
- EEV Principles consisted of 12 Principles and
 65 related areas of Guidance
- Other 127 comments, collected in the "Basis for Conclusions", summarised the considerations in producing the Principles and Guidance
- In October 2005, additional guidance on EEV disclosures was published to improve consistency of disclosures and sensitivities

CFO Forum

CFO Forum and EEV Principles

required use of stochastic simulations to determine impact of financial guarantees

Return	SH's result	
0.0%	-3.0%	
0.5%	-2.5%	
1.0%	-2.0%	
1.5%	-1.5%	
2.0%	-1.0%	
2.5%	-0.5%	
3.0%	0.0%	
3.5%	0.5%	-
4.0%	1.0%	
4.5%	1.0%	
5.0%	1.0%	
5.5%	1.0%	
6.0%	1.0%	
6.5%	1.0%	
7.0%	1.0%	
7.5%	1.0%	
8.0%	1.0%	
8.5%	1.0%	
9.0%	1.0%	
9.5%	1.0%	
10.0%	1.0%	
10.5%	1.1%	
11.0%	1.1%	
11.5%	1.2%	
12.0%	1.2%	
12.5%	1.3%	
13.0%	1.3%	
13.5%	1.4%	
14.0%	1.4%	
14.5%	1.5%	
15.0%	1.5%	

Guaranteed interest (gar)	3%
Participation percentage (a)	90%
Minimum retained (fee)	1%

PH's result = max (gar, min (return*a, return - fee) SH's result = return - PH's result

Asymmetry of SH's results: the mean SH's result is lower than the SH's result in the mean scenario

Valuation of the financial asymmetry

- Insurance business is asymmetric:
 - in "positive" scenarios, SHs earn only a share of the financial profit (due to the profit sharing with PHs)
 - in "negative" scenarios, SHs bear the full cost (due to the presence of guaranteed interests)

the mean of PVFPs is lower than the PVFP of the mean scenario

To capture the financial asymmetry (i.e. volatility of financial parameters):

• TEV

- 1 single scenario ("Best Estimate")
- implicit allowance for risks within the discount rate (290bps over govt.bonds)

• STOCHASTIC APPROACH:

- a number of stochastic scenarios is considered (1000 or 5000 or ...)
- in each scenario future profits and PVFP are calculated
- the final PVFP is the mean of all the PVFPs in the stochastic scenarios

Valuation of the financial asymmetry

AGENDA

1. Methodological Aspects: from the Traditional to the Market Consistent Embedded Value

Getting to grips with Embedded Value

- Why not just using the Balance Sheet?
- Basic definitions: Embedded Value

From Traditional to Market Consistent EV

- Value of in-force business (VIF)
- Traditional EV: technical aspects
- Limits of traditional Embedded Value
- CFO Forum and EEV Principles
- Market Consistent Embedded Value

Market Consistent Embedded Value

Market consistent valuation:

all projected cash flows are valued in line with the prices of similar cash flows that are traded in the financial market

Stochastic approach, consistent with modern financial theory

- Avoid subjectivity in the choice of RDR and financial assumptions
- Avoid capitalisation of asset risk premium (no arbitrage)
- Impact of financial guarantees is captured in all possible scenarios (no implicit allowance)
- Two main possible approaches leading to same results
 - > Deflator approach
 - Risk-neutral approach

MCEV: two different approaches

Two possible ways to reflect Risk Aversion:

- using real-world probabilities of scenarios and calibrating to the market scenario dependent discount rates (<u>Deflator approach</u>)
- discounting at the risk-free rate and calibrating to the market probabilities of scenarios (<u>Risk-neutral approach</u>)

MCEV: Risk Neutral approach

> Assuming that Discount Rate is equal to Risk Free:				Free: $P_0 = \frac{P_1^*}{1}$	$\frac{\text{probabilit} y_1}{+ \text{ discount} 1} + \frac{P_2}{1}$	* probabilit y_2 1 + discount ₂
Equity/Bond		Discount	pay-off in	one year	anah ah ilitu	
Price		Rate	bond	equity	probability	
100	scenario 1	5%	105	113.5	43.33%	
100	scenario 2	5%	105	98.5	56.67%	

Asset price is the mean of present values of corresponding pay-offs in all scenarios

$$100 = \frac{113.5 * p_1 + 98.5 * (1 - p_1)}{1 + 5\%}$$

 $p_1 = 43.33\%$

$$p_2 = 1 - p_1 = 56.67\%$$

Given the pay-offs and <u>set the discount rate equal to risk free</u>, <u>the probabilities</u> of the scenarios <u>are calibrated to the market</u>

Input		Output	
Bond return	5.0%	Bond return	5.0% =5.0%*43.33%+5.0%*57.66%
Equity Returns	7.5%	Equity Returns	5.0% =13.5%*43.33%-1.5%*57.66%

50

"Certainty Equivalent": contract with 80% financial PS, no guarantee 51

Certainty Equivalent: deterministic approach with Risk Free as investment return / Risk free as RDR

 $= (31.90*43.33\% + 10.90*56,67\%)^{*}(1+5\%)^{=1}(42.10*43.33\% - 24.50*56,67\%)^{*}(1+5\%)^{-1}$

52

"Risk Neutral" applied to contract with 80% financial PS and 2% guarantee

53

Market Consistent PVFP can be seen as difference of: Certainty Equivalent - Time Value of option & guarantees **1. Methodological Aspects: from the Traditional to the Market Consistent Embedded Value**

2. CFO Principles: the MCEV framework

3. Stochastic scenarios: calibration and validation

4. Asset and Liabilities valuation: looking for a consistent approach through the risk free definition

5. The MCEV calculation: a simple and "practical" example

- a high level discussion group
- founded in 2002
- focused on:
 - new regulations for insurers
 - increase in transparency for investors
 - improving consistency of information reported
- with wide representation from major Europeancentred insurance groups

CFO Forum and EEV Principles

- In May 2004, the CFO Forum published the European Embedded Value Principles and member companies agreed to adopt EEVP from 2006 (with reference to 2005 financial year)
- EEV Principles consisted of 12 Principles and
 65 related areas of Guidance
- Other 127 comments, collected in the "Basis for Conclusions", summarised the considerations in producing the Principles and Guidance
- In October 2005, additional guidance on EEV disclosures was published to improve consistency of disclosures and sensitivities

CFO Forum

Away from TEV: EEV Principles

European Embedded Value Principles					
Principle 1	Introduction	Principle 7	Financial options and guarantees		
Principle 2	Coverage	Principle 8	New Business and renewals		
Principle 3	EV Definitions	Principle 9	Assessment of appropriate projection assumptions		
Principle 4	Free Surplus	Principle 10	Economic assumptions		
Principle 5	Required capital	Principle 11	Participating business		
Principle 6	Future shareholder cash flow from the in-force covered business	■ Principle 12	Disclosure		

Required use of appropriate approaches (*e.g. stochastic simulations*) to determine the impact of financial guarantees

→ Generali's first EEV disclosure in May 2006, with YE2005 results

At the time, the EEV Principles represented a major step forward, introducing several major improvements:

- ✓ requirement for stochastic evaluation of financial guarantees and options
- ✓ disclosure of sensitivities and analysis of movement
- codification of several areas of current best practice, including disclosure on methodology and assumptions used

...but different approaches were still allowed!

EEV Principles

TOP DOWN EEV: risk discount rate based on company's WACC **MCEV**: market consistent embedded value

CFO Forum – June 2008: launch of MCEV Principles

Market Consistent Embedded Value Principles – June 2008	CFOFORUM
CFO Forum	
Market Consistent Embedded V Principles	alue
June 2008	

On the 4th June 2008, the CFO published the **Market Consistent Embedded Value Principles¹** and associated **Basis for Conclusions**

MCEV Principles:

- replaced the EEV Principles (i.e. standalone document, not supplement to EEV)
- at beginning compulsory from year-end 2009 for CFO Forum members (early adoption was possible)
- mandated independent external review of results as well as methodology and assumptions

Market Consistent Embedded Value Principles					
Principle 1	Introduction	Principle 10	New Business and		
 Principle 2 	Coverage	Principle 11	Renewals Assessment of Appropriate		
Principle 3	MCEV Definitions		Assumptions		
Principle 4	Free Surplus	Principle 12	Economic Assumptions		
Principle 5	Required Capital	Principle 13	Investment Returns and Discount Rates		
Principle 6	Value of in-force Covered Business	Principle 14	Reference Rates		
Principle 7	Financial Options and	Principle 15	Stochastic models		
Principle 8	Guarantees Frictional Costs of Required Capital	Principle 16	Participating business		
Principle 9	Cost of Residual Non Headgeable Risks	 Principle 17 	Disclosure		

Main implications of the MCEV Principles:

- all projected cash flows should be valued in line with the price of similar cash flows that are traded in the capital markets [*Principle 3 & 7*]
- <u>use of swap rates as reference rates</u> (i.e. proxy for risk-free rate) [*Principle 14*]
- no adjustment for illiquidity premium is allowed [Principle 14]
- volatility assumptions should be based on <u>implied volatilities</u> derived from the market <u>as at</u> <u>the valuation date</u> (rather than based on historic volatilities) [*Principle 15*]
- <u>required capital</u> should include amounts required <u>to meet internal objectives</u> (based on internal risk assessment or targeted credit rating) [*Principle 5*]
- explicit and separate allowance for the cost of non hedgeable risks [Principle 9]

The launch of **MCEV Principles** was initially welcomed by analysts and investor community and it was seen as a step in the right direction

For Italy government bond rates higher than swap rates

Financial market situation at YE2008: a "dislocated" market

EQUITY VOLATILITY AT HISTORICAL PEAK

CORPORATE SPREADS AT RECORD LEVELS

CFO Forum - December 2008: tackling extreme financial conditions

🗿 CFO Forum - EEV Principles - Mi	crosoft Internet Explorer			
File Modifica Visualizza Preferit	ti Strumenti ?			
🔇 Indietro 👻 🕤 👻 👔 🏠	🔎 Cerca 🛭 👷 Preferiti) 🙆 - 🔮 🗹 - [3 🛍 🙎	
Indirizzo 🙋 http://www.cfoforum.nl/	eev.html			
CFO FORUM				
HOME	MCEV/EEV PRINCIPLES	IFRS	CFO FORUM MEMBERSHIP	DISCLAIMER
	Market Consistent Emb 19 December 2008 In response to the curren collaboratively on the ap address the notion of ma The CFO Forum remains However, the MCEV Print conditions and their app Forum has therefore agr MCEV Principles, the res issuance of guidance. The particular areas und use of swap rates as a p	edded Value (MCEV) nt dislocated market of plication of the Market arket consistency in th s committed to MCEV <u>ciples were designed</u> lication could, in turbu reed to conduct a revie sult of which may lead	Principles conditions, the CFO Forum members t Consistent Embedded Value (MCEV ne current turmoil. and the Principles published in June during a period of relatively stable m lent markets, lead to misleading resi ew of the impact of turbulent market c l to changes to the published MCEV P olied volatilities, the cost of non-hedge s and the effect of liquidity premia.	are working) Principles© to 2008. <u>arket</u> <u>ul</u> ts. The CFO onditions on the <u>Principles or the</u>

CFO Forum - May 2009: deferral of mandatory date

CFOFORUM

Amsterdam, 22 May 2009

PRESS RELEASE

The European Insurance CFO Forum (the CFO Forum) provides an update on progress made in developing the Market Consistent Embedded Value (MCEV) Principles[©]

In December 2008, the CFO Forum announced that its member companies would be working to address the notion of market consistency within the MCEV Principles across the economic cycle and in particular its application in current dislocated markets.

The current financial crisis has revealed significant challenges for MCEV, such as adjustments for liquidity premia, which have ultimately harmed comparability. The CFO Forum has agreed to do further work to seek to improve the consistency in the adjustments made for liquidity premium and volatilities. This should also allow due consideration to be given to Solvency II developments where liquidity premium is an equally important issue. A further update on the work of the CFO Forum will be provided later this year.

In light of these developments, which may result in significant amendments to MCEV, we believe it is sensible to defer the mandatory MCEV reporting for all member firms until 2011.

CFO Forum statement

- further work needed
- mandatory date of MCEV Principles reporting deferred from 2009 to 2011

CFO Forum - October 2009: amendment of MCEV principles

In October 2009, the CFO Forum announced a change to its MCEV Principles to reflect the inclusion of an illiquidity premium

Market Consistent Embedded Value Principles - October 2009 Market Consistent Embedded Value Principles - June 2008 **REFERENCE RATES** REFERENCE RATES *Principle* 14: The *reference rate* is a proxy for a risk Principle 14: The reference rates used should, free rate appropriate to the currency, term and wherever possible, be the swap yield curve liquidity of the liability cash flows. appropriate to the currency of the cash flows. • Where the liabilities are *liquid* the *reference rate* G14.4 No adjustments should be made to the swap yield should, wherever possible, be the swap yield curve curve to allow for liquidity premiums or credit risk appropriate to the currency of the cash flows. premiums. • Where the liabilities are not *liquid* the reference rate should be the swap yield curve with the inclusion of a liquidity premium, where appropriate. **G14.1** In evaluating the appropriateness of the inclusion of a liquidity premium (where liabilities are not liquid) consideration may be given to regulatory restrictions, internal constraints or investment policies which may limit the ability of a company to access the liquidity premium.

The **CFO Forum** recognised that:

- the existence of an illiquidity premium is clear
 - \checkmark as evidenced by a wide range of academic papers and institutions
- MCEV valuations should reflect the inclusion of an illiquidity premium
 - ✓ where liabilities are not liquid
- further work is needed to develop more detailed application guidance to increase consistency going forward
 - ✓ on the <u>methods to estimate</u> the illiquidity premium
 - ✓ on the <u>application</u> of the illiquidity premium in the valuation of insurance liabilities
 - e.g. different categories of products from fully liquid to fully illiquid, having a different percentage of the illiquidity premium ("*bucket approach*")?

MCEV Principles - latest developments: deferral of mandatory date

In April 2011,

on account of the concurrent developments of insurance reporting under SII and IFRS, the **CFO Forum announced the withdrawal of the mandatory date** for compliance with the **MCEV Principles**, previously set at YE2011

... but CFO Forum still remain committed to the value in supplementary information, including embedded value

MCEV Principles - latest developments: tackling the sovereign debt crisis 70

CFOFORUM

Munich, 9 December 2011

PRESS RELEASE

The European Insurance CFO Forum (the 'CFO Forum') responds to current market conditions

In response to current sovereign debt market conditions and complementary to the transition guidance published in September 2011, waiting for the finalisation of Solvency II, the CFO Forum members are working collaboratively on the application of the Market Consistent Embedded Value (MCEV) Principles© to ensure that companies have access to the best possible guidance on the subject and that the application is appropriate to the current market conditions and to the needs of the users of financial statements.

Including an allowance for the current sovereign debt market conditions as a component of the reference rate in embedded value reporting or disclosing a sensitivity as supplementary information of reported embedded value to such parameters where it is deemed appropriate would represent an initial step towards the expected convergence of MCEV with the developing European regulatory regime (Solvency II) on the matter. **1. Methodological Aspects: from the Traditional to the Market Consistent Embedded Value**

2. CFO Principles: the MCEV framework

3. Stochastic scenarios: calibration and validation

4. Asset and Liabilities valuation: looking for a consistent approach through the risk free definition

5. The MCEV calculation: a simple and "practical" example

Why Economic Scenario Generators?

The financial products sold by insurance companies often contain guarantees and options of numerous varieties, (i.e. maturity guarantee, multi-period guarantees)

At the time of policy initiation, the options embedded in insurance contracts were so far out-ofthe-money, that the companies disregarded their value as it was considered negligible compared with the costs associated with the valuation.

In light of current economic events and new legislations, insurance companies have realised the importance of properly managing their options and guarantees and it is one of the most challenging problems faced by insurance companies today.

Economic Scenario Generators

Real world

- reflect the expected future evolution of the economy by the insurance company (reflect the real world, hence the name)
- include risk premium
- calibration of volatilities is usually based on analysis of historical data

Market consistent

- reproduce market prices
- risk neutral, i.e. they do not include risk premium
- calibration of volatilities is usually based on implied market data
- arbitrage free

Interest rate models

The interest rate model is a central part of the ESG, as the price of most of the financial instruments are related to interest rates.

A large number of models have been developed in the few decades:

Interest rate calibration

Considering interest rate models where the **market** yield curve is a direct input, it is possible to derive an excellent-fitting **model** yield curve (the **delta** are really unimportant).

Interest rate calibration

The calibration of the volatility of the term structure is based on swaption prices, since these instruments gives the holder the right, but not the obligation, to enter an interest rate swap at a given future date, the maturity date of the swaption

Credit model calibration

The most used Credit model is the Jarrow, Lando and Turnbull (1997) that is able to

- □ fit **market credit spread** for each rating class matching a single spread of a given rating and maturity
- provide a risk-neutral probability through annual transition matrix moving bonds to a different rating class (including default)

		Rating at End of Period							
		AAA	AA	А	BBB	BB	В	CCC	D
ting at start of period	AAA	90.0%	8.0%	1.0%	0.5%	0.3%	0.2%	0.0%	0.0%
	AA	2.0%	86.0%	3.0%	2.5%	2.3%	2.2%	1.6%	0.4%
	А	1.5%	2.0%	84.0%	5.0%	2.8%	2.4%	1.8%	0.5%
	BBB	0.4%	1.8%	2.5%	81.0%	4.0%	3.2%	4.0%	3.1%
	вв	0.3%	1.2%	1.3%	7.0%	78.0%	3.5%	4.5%	4.2%
	В	0.2%	0.3%	0.5%	2.5%	4.0%	75.0%	5.0%	12.5%
	ссс	0.1%	0.2%	0.4%	1.4%	2.0%	3.0%	71.0%	21.9%
Ra	D	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	100.0%

Equity model calibration

Equity models are calibrated to equity implied volatilities, that are generally traded with terms up to two years; long terms are available over-the-counter (OTC) from investment bank. The choice depends on the users' appetite for sophistication and liability profile

Constant volatility

(CV)

is the Black-Scholes log-normal model implied volatilities of options will be quite invariant with respect to option term and strike.

Time varying deterministic volatility (TVDV)

volatility vary by time according monotonic deterministic function It captures the term structure of implied volatilities but are still invariant by strike

Stochastic volatility jump diffusion (SVJD)

captures the term structure and the volatility skew

Reduce sampling error

The Monte Carlo technique is subject to statistical error ("sampling error"); to reduce the magnitude of sampling error it is possible to

- Run more simulation: the size of sampling error scales with the square root of the number of simulations. This mean that we would need to run 4 times the number of scenarios to halve the sampling error.
- □ Variance reduction techniques: "adjust" the simulations, or the cash flows produced by them, or the weights assigned to them in a way that ensures the resulting valuations are still "valid" but the sampling error is reduced.

Martingale test is performed verifying that the discounted prices of the asset is the same as today's price

	Equity	Risk free	Deflator	PV Equity	
0	1.00				
1	1.05	5%	95.24%	1.00	
2	1.10	5%	90.70%	1.00	
3	1.17	5%	86.38%	1.01	
4	1.23	5%	82.27%	1.01	
5	1.29	5%	78.35%	1.01	
6	1.35	5%	74.62%	1.01	
7	1.42	5%	71.07%	1.01	
8	1.49	5%	67.68%	1.01	
9	1.58	5%	64.46%	1.02	
10	1.66	5%	61.39%	1.02	

	Equity	Risk free	Deflator	PV Equity
0	1.00			
1	1.03	3%	97.09%	1.00
2	1.06	3%	94.26%	1.00
3	1.11	3%	91.51%	1.01
4	1.13	3%	88.85%	1.01
5	1.17	3%	86.26%	1.01
6	1.21	3%	83.75%	1.01
7	1.24	3%	81.31%	1.01
8	1.28	3%	78.94%	1.01
9	1.33	3%	76.64%	1.02
10	1.37	3%	74.41%	1.02

How many simulations?

Martingale test is so used to determine how many simulations are to be considered in the calibration of Economic Scenario.

1.20

1.15

1.10

1.00

0.95

0.90

Martingale Test - 5,000 simulations

1. Methodological Aspects: from the Traditional to the Market Consistent Embedded Value

- 2. CFO Principles: the MCEV framework
- 3. Stochastic scenarios: calibration and validation

4. Asset and Liabilities valuation: looking for a consistent approach through the risk free definition

5. The MCEV calculation: a simple and "practical" example

Level 2 Draft Implementing Measures

The rates of the relevant risk-free interest rate term structure to calculate the best estimate with respect to insurance or reinsurance obligations, as referred to in Article 77(2) of Directive 2009/138/EC, shall be calculated **as the sum of**:

- the rates of a **basic risk-free interest rate term structure**;
- where applicable, a counter-cyclical premium
- where applicable, a matching premium

For each relevant currency, EIOPA shall derive and publish:

- the **basic risk-free interest rate term structure** referred to in point (a) of paragraph 1;
- the counter-cyclical premium referred to in paragraph 1 of Article IR6;
- the **ultimate forward rate** referred to in paragraph 2 of Article IR4.

Basic Risk Free interest rate term structure - extrapolation

The extrapolation technique (Nelson Siegel or Smith Wilson), the extrapolation entry point and the ultimate forward rate (UFR) are key drivers of the valuation, especially in case of long term business with guarantees

Basic Risk Free interest rate term structure

Generali is using, for EV/EBS exercise at YE2011 (EURO):

- Swap rates as basic risk-free interest rate term structure;
- 30y entry point for the extrapolation
- 4.2% as Ultimate Forward Rate
- Smith-Wilson as extrapolation technique

Counter – cyclical premium

Generali is supporting the Industrial proposal for CCP and, in line with last CFO Forum statement, will disclose to Financial Markets at YE2011:

- > calculation using Illiquidity premium applied to forward rate
- impact assessment using a govies adjustment based on Industrial Proposal

1. Methodological Aspects: from the Traditional to the Market Consistent Embedded Value

2. CFO Principles: the MCEV framework

3. Stochastic scenarios: calibration and validation

4. Asset and Liabilities valuation: looking for a consistent approach through the risk free definition

5. The MCEV calculation: a simple and "practical" example

Quali sono le principali caratteristiche del prodotto che impattano sulla valutazione del valore e della riserva?

- Livello, struttura delle garanzie finanziarie e regole di rivalutazione
- Corrispondenza tra costi associati al contratto e caricamenti
- Penalità di riscatto, in ammontare e anni di opzione
- Opzioni contrattuali aggiuntive, come l'opzione di conversione in rendita

The MCEV calculation: a simple and "practical" example						
Premi Incassati	Numero contratti: 100 Premio medio: 1.000 Premi totali incassati: 100,000					
Investimento Riserva	Premi totali incassati: 100,000 Caricamento medio: 15% Premi investiti: 85,000	Margine da caricamento				
Costi e spese	Costi di acquisizione: 2% Spese di gestione: 10% Costi e spese: 12,000					
Rendimento Investimenti	60.000 Bond: coupon 4.5% 25.000 Equity: dividendo 8% Rendimento medio portafoglio: 5.5%	Margine Finanziario				
Rivalutazione Prestazioni	2.5% Minimo Garantito Profit sharing: 80% x rendimento – min gar Retrocesso Totale: 2.5% + 80% (5.5%) - 2.5% = 5%					
Morti Riscatti e Scadenze	Probabilità di morte assicurati: 1% = 1 decesso Ipotesi di riscatto: 15% = 15 riscatti Pagamenti totali: 15 x valore di riscatto + 1 x prestazione caso morte	Margine				
Rilascio Riserva contratti usciti	(15 + 1) x valore riserva					

¥

89

Perché proiettare gli attivi?

Ottenere rendimenti per:

- Finanziare i minimi garantiti
- Finanziare la rivalutazione delle prestazioni
- Generare utile finanziario

Rendimenti provenienti da:

- Cedole fisse
- Dividendi, affitti, cedole variabili
- Trading (realizzo minus/plus)

PUNTI DI ATTENZIONE

- Le valutazioni sono effettuate considerando il portafoglio chiuso, senza afflusso di premi di nuova produzione
- L'assenza di matching tra attivi e passivi può produrre costi di disinvestimento e/o di reinvestimento

Cosa fare nella proiezione?

Per ogni titolo è necessario proiettare cedole/dividendi e valore di mercato:

Il valore di mkt cambia in funzione dei tassi di mercato.

PROIEZIONE AZIONI

- Il dividendo è incerto, sin dal primo anno di proiezione.
- Il valore di mkt è in media molto più volatile di quello dei Bond

Va definito uno scenario

con la proiezione per 40 anni di:

- Struttura a termine dei tassi risk-free
- Spread/migrazioni corporate bond
- Dividendi / indici azionari e real estate

Come va utilizzato?

Nella proiezione, in base ai net cash flow:

- Definisco asset allocation
- Determino i rendimenti e il valore di mercato dei titoli a copertura
- Trading (realizzo minus/plus)

Cosa succede nella proiezione?

I pagamenti nell'anno T dipendono dal rendimento degli attivi nel periodo precedente (T-1) Il rendimento del fondo in T-1 dipende dalle «management action» (per esempio quali titoli compro/vendo) definite e dall'andamento dei mercati nello scenario

Perché uno scenario non basta?

Passo da 1 a 1.000 scenari:

Uno scenario non è in grado di catturare i **costi** delle garanzie dei prodotti.

La valutazione va ripetuta per tutti gli scenari e il valore finale sarà pari alla media dei valori ottenuti nei 1.000 scenari.

RISERVA LOCAL GAAP: è calcolata in un unico scenario:

E' il valore atteso dei cash flow nello scenario di 1° ordine (*ipotesi prudenti*)

RISERVA A FAIR VALUE: la valutazione va ripetuta nei 1.000 scenari

PUNTI DI ATTENZIONE

Gli scenari stocastici devono catturare la diversa rischiosità degli attivi(bond governativi, corporate, azioni..) Il rendimento medio nei 1.000 scenari è lo stesso per tutte gli attivi, ma più gli attivi sono rischiosi, maggiore è la volatilità del loro rendimento *(SCENARI DI TIPO RISK NEUTRAL)*.