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Abstract Solvency II regulation provides different approaches for the calculation

of the solvency capital requirement (SCR): standard formula with simplification,

standard formula, standard formula with undertaking specific parameters (USP),

partial internal model and full internal model. In particular this regulation describes

a subset of the Standard Formula market parameters (standard deviations) that may

be replaced by USP, in order to calculate the SCR deriving from Premium and

Reserving Risks of a Non-Life insurance company. This paper aims to explain the

data requirements, methodologies and results according the so-called standardized

methods proposed in the Solvency II regulation for the USP. Applying the stan-

dardized methods to three companies respectively of small, medium and large sizes

and developing some sensitivity analysis, regarding the change in data from year to

year, peaks and other issues which standardized methods look sensitive, the paper

shows when the USP could reduce the SCR in comparison with the Standard

Formula approach.
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1 Introduction

Solvency II provides different approaches for the calculation of the solvency capital

requirement (SCR): standard formula (SF) with simplification, standard formula,

standard formula with undertaking specific parameters (USP), partial internal model

(PIM) and full internal model (IM).

These methods are progressively more representative of company risk profile but

also less easy to implement. The SF with USP is typically the first step in order to

obtain capital requirements more calibrated on the risk profile of a company than

using SF, and less complex than an Internal Model.

According to article 104 of Solvency II directive (European Parliament [15]),

within the design of the SF, insurance and reinsurance undertakings may replace a

subset of its parameters (market-wide parameters) for each line of business (LoB)

by specific parameters of the undertaking when calculating SCR for Non-Life and

Health underwriting risk module. Standard deviations on 1 year time horizon for

premium and reserve risks belong to this subset.

One year volatility modelling has received wide coverage in actuarial and

statistical literature. Starting from the seminal work by AISAM-ACME [1], Ohlsson

and Lauzeningks [21] describe simulation approaches for the one-year reserve risk

and present a discussion on the one-year premium risk and its relation to the

premium reserve. Diers [9] presents the idea of re-reserving applied in modelling

reserve risk and premium risk. Gisler [16] explains how one year reserve and

premium risks can be estimated under the Swiss Solvency Test. Appert et al. [2]

exhibits a model proposing closed-form expressions for the one-year prediction

error of the Claims Development Result in a multivariate framework. This model

relies on a framework, which corresponds to the bivariate version of the Mack

model [18].

In the technical specifications of the Quantitative Impact Studies 5 (QIS5),

published on 5th June 2010, six standardized methods have been shown: three for

premium risk and three for reserve risk (see CEIOPS [4, 5]). An analysis for the

Italian market of QIS5 USP results has been shown in Cerchiara and Santoni [6].

Discussions on strengths and weaknesses of USP approach are given in Bulmer [3].

Cerchiara and Magatti [7] show how premium risk standard deviation can be

calculated using a PIM, based on Generalised Linear or Additive Models, with a

numerical comparison with CEIOPS approach on USP.

In October 2010, EIOPA (ex CEIOPS), has been committed to carry out a

comprehensive revision of the calibration of the premium and reserve risk factors in

the Non-Life and Health underwriting risk module of the SCR standard formula (see

EIOPA [10–12]).

New calibration methods for USP have been introduced by the ‘‘Delegated Act

Solvency II’’ (DA) published on 10th October 2014 (see EIOPA [13] and European

Commission [14]). In particular, annex XVII of DA shows three new calibration

methods for USP (and not six), one for premium risk and two for reserve risk.

The theoretical method underlying method 1 for premium and reserve risks is one

of the four methods tested by the ‘‘Joint Working Group—JWG—on Non-Life and
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Health NSLT Calibration’’ in the subsection Lognormal Models with Second

Variance Parametrisation (see EIOPA [10]).

The loss reserving method underlying method 2 for reserve risk is the well-

known Merz-Wüthrich model (Merz and Wuthrich [19, 20]).

Following De Felice and Moriconi [8], where the authors show fitting tests of

standardized methods in order to get USP approval from the supervisor using data of

Italian insurance market, this paper aims firstly to give a theoretical background of

these new standardized methods and then to show weakness and strengths of the SF

with USP by some pseudo-real case studies for the Italian market.

The paper is structured as follows. In Sects. 2 and 3 we describe the theoretical

approach of the standardized methods for premium and reserve risks. In Sect. 4 we

give some practical details on the implementation of these methods by the Software

R. Section 5 contains our analysis by applying the standardized methods to three

companies data respectively of small, medium and large sizes and developing some

sensitivity analysis, regarding the change in data from year to year, peaks and other

issues which standardized methods look sensitive. Finally Sect. 6 contains some

concluding remarks.

2 Standard formula with undertaking specific parameters: calibration
methods

SCR for Non-Life underwriting risk is derived combining capital requirements for

the Non-Life sub-risks: premium and reserve, lapse and catastrophe risks.

In this paper, we deal with the two sources of underwriting risk that are joined in

the SF in a submodule: premium risk and reserve risk.

Premium risk results from fluctuations in the timing, frequency and severity of

insured events while reserve risk results from fluctuations in the timing and amount

of claim settlements. For this submodule, capital requirement (SCRNL) is obtained

as follows:

SCRnl prem res ¼ 3 � rnl � Vnl ð1Þ

where

(a) Vnl denotes the volume measure for Non-Life premium and reserve risks

determined in accordance with Article 116 of DA;

(b) rnl denotes the standard deviation for Non-Life premium and reserve risks

determined in accordance with Article 117 of DA, combining the rs

according to the correlation matrix between each segment.

We focus our attention on rs:

rs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2ðprem;sÞ � V
2
ðprem;sÞ þ rðprem;sÞ � Vðprem;sÞ � rðres;sÞ � Vðres;sÞ þ r2ðres;sÞ � V

2
ðres;sÞ

q

Vðprem;sÞ þ Vðres;sÞ

ð2Þ
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If we assign market wide standard deviations to r(prem,s) and r(res,s), we are

implementing Standard Formula. According to article 218 of DA, in order to obtain

results more entity specific, standard deviations for premium and reserve risks may

be estimated using the calibration methods published in annex XVII of the DA.

EIOPA calibrated prudently the market wide standard deviations to obtain capital

requirements that give protection, with a given probability, to all types of

companies: with small, medium and large dimensions. This means that pooling risk

is not taken in account, i.e. the volatility of the underwriting risk does not decrease

for increasing portfolio dimensions. For this reason, undertaking specific standard

deviations could be more representative of specific company risk profile.

As in QIS5 methods, USP (for both risks) derives from a credibility approach,

where final USP is obtained through a linear combination of market wide volatility

and an estimation of specific company volatility.

In the following subsections, we describe the main features of the three

standardized methods of the DA, using the framework shown in De Felice and

Moriconi [8].

2.1 Method 1: premium and reserve risk

The standardized method 1 of DA is the same for premium and reserve risks, with

the only differences regarding the data used for calibration. As mentioned above, the

theoretical method underlying method 1 derives from the ‘‘Joint Working Group on

Non-Life and Health NSLT Calibration’’ in the subsection Lognormal Models with

Second Variance Parametrisation. However, method 1 is obtained through a

reparametrization of the JWG estimation function and using data of the specific

company rather than using the entire insurance market data: in the JWG methods,

there is a double sum operator, one for accident years and one for insurance

companies. The last one does not appear in DA methods because the aim is

calibration of standard deviations for a specific company and not for the whole

market.

Both for premium and reserve risks, the USP is calculated as follows:

rð�;s;USPÞ ¼ c � r̂ d̂; ĉ
� �

�
ffiffiffiffiffiffiffiffiffiffiffiffi

T þ 1

T � 1

r

þ ð1� cÞ � rð�;sÞ ð3Þ

Credibility factor c varies according to the LoB considered and the number of

years T (accident years in premium risk method and financial years in reserve risk

method) for which data are available.

Reasonably, the bigger the length of time series the greater is the credibility

given to the undertaking specific standard deviation r̂ and smaller to the market

wide standard deviation r prem;sð Þ.

Undertaking specific standard deviation is defined as follows:

r̂ d̂; ĉ
� �

¼ exp ĉþ
1
2
T þ

PT
t¼1 ptðd̂; ĉÞ � ln

yt
xt

� �

PT
t¼1 ptðd̂; ĉÞ

0

@

1

A ð4Þ
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where

pt d̂; ĉ
� �

¼ 1

ln 1þ ð1� d̂Þ
� �

� �x
xt
þ d̂

� �

� e2ĉ
ð5Þ

�x ¼ 1

T

XT

t¼1
xt ð6Þ

Therefore, this model, as also method 2 for reserve risk, considers a random

variable Y ¼ yt; t ¼ 1; . . .; Tf g whose variance is obtained through its theoretical

relationships with an explicative variable X ¼ xt; t ¼ 1; . . .; Tf g which acts as

volume measure.

For premium risk these variables shall consist of premiums earned xt and

aggregated losses yt, i.e. the payments made and the best estimates of the provision

for claims outstanding after the first development year of the accident year of those

claims. They have to be available for at least five consecutive accident years. The

aggregated losses shall include the expenses incurred in servicing the insurance and

reinsurance obligations and be adjusted for catastrophe claims, for amounts

recoverable from reinsurance contracts which are in place to provide cover for the

following twelve months (only when the premium risk method is applied to replace

the standard parameters referred to in Article 196(1)(a)(ii) and (c)(ii)) and any other

adjustments that may distort the behavior of the risk being analyzed.

For reserve risk yt represents the sum of the best estimate provision at the end of the

financial year for claims that were outstanding in segment s at the beginning of the

financial year and the payments made during the financial year for claims that were

outstanding in segment s at the beginning of the financial year. The variable xt is instead

the best estimate of the provision for claims outstanding in segment s at the beginning of

the financial year. Data have to be available for at least five consecutive financial years,

shall include the expenses incurred in servicing the insurance and reinsurance

obligations and have to be adjusted for amounts recoverable from reinsurance contracts.

The functions involved in USP calculation depend by d̂ and ĉ, defined

respectively mixing parameter and logarithmic variation coefficient. The values

of d and c variables are the solutions that minimize the following function (Klugman

et al. [17]):

lðajdataÞ ¼
X

T

t¼1

ptðd̂; ĉÞ ln
yt

xt

� �

þ 1

2 �ptðd̂; ĉÞ
þ ĉ� ln r̂ðd̂; ĉÞ

� �

 !2

�
X

T

t¼1

ln ptðd̂; ĉÞ
� �

ð7Þ

For the purposes of optimization, mixing parameter is subject to the constraint of

belonging to the closed interval [0,1]. Logarithmic variation coefficient has not

constraints, but it is always negative being the logarithm of a real number belonging

to [0,1].
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2.2 Method 2: reserve risk

The loss reserving method underlying method 2 for reserve risk is the well-known

Merz-Wüthrich model, shown in ‘‘Modelling The Claims Development Result For

Solvency Purposes’’ (see Merz and Wüthrich [19, 20]). According to the method 2

of DA, volatility is calibrated as the ratio between the root of Mean Squared Error of

Prediction (MSEP) of the Claims Development Result and the estimation of the

Outstanding Loss Liabilities, considering one-year view. This undertaking specific

standard deviation is then combined with market wide standard deviation through

credibility coefficients, as method 1.

The data used for the calibration of USP for Non-Life reserve risk are the

cumulative claims amounts for each accident year i = 0,…,I and development year

j = 0,…,J with I C J. Data should be available for at least five consecutive accident

years, adjusted for amounts recoverable from reinsurance contracts and include

expenses.

The formula is the following:

rðres;s;USPÞ ¼ c �
ffiffiffiffiffiffiffiffiffiffiffiffiffi

MSEP
p

PI
i¼0 Ĉði;JÞ � Cði;I�iÞ
� �þ 1� cð Þ � rðres;sÞ ð8Þ

The variables c and rðres;sÞ are, respectively, the credibility factor and market

wide standard deviation for the segment considered. We can observe that
PI

i¼0 Ĉði;JÞ � Cði;I�iÞ
� �

is the reserve estimation through the Chain Ladder method.

For this reason, the DA method 2 is the same proposed in the QIS5 method 3 for

reserve risk.

The cumulative payment estimate Ĉði;jÞ for accident year i and development year j

is:

Ĉði;jÞ ¼ Cði;I�iÞ f̂I�i � � � f̂j�2 f̂j�1 ð9Þ

where for all development years f̂j denotes the development factor estimate:

f̂j ¼
PI�j�1

i¼0 Cði;jþ1Þ
PI�j�1

i¼0 Cði;jÞ
ð10Þ

Finally, according the following formula:

Sj ¼
X

I�j�1

i¼0

Cði;jÞ ð11Þ

S
0

j ¼
X

I�j

i¼0

Cði;jÞ ð12Þ
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r̂2j ¼
1

I�j�1

PI�i�1

i¼0
Cði;jÞ

Cði;jþ1Þ
Cði;jÞ

�f̂j

� �2

j¼ 0;...;ðJ�2Þ

min r̂2
J�2

;r̂2
J�3

;
r̂4
J�2

r̂2
J�3

� �

j ¼ ðJ�1Þ

8

>

>

<

>

>

:

ð13Þ

Q̂j ¼
r̂2j
f̂ 2j

ð14Þ

the MSEP is:

MSEP ¼
X

I

i¼1

Ĉ2
ði;JÞ �

Q̂I�i

Cði;I�iÞ
þ
X

I

i¼1

X

I

k¼1

Ĉði;JÞ� Ĉðk;JÞ �
Q̂I�i

SI�i

þ
X

J�1

j¼I�iþ1

CðI�j;jÞ

S
0
j

�
Q̂j

Sj

 !

ð15Þ

3 Assumptions underlying standardized methods

3.1 Method 1

Method 1 for premium and reserve risks is based on different assumptions:

• There is a linear relation between E½Y� and X in a particular accident year:

E½Y � ¼ b ðM1M)

• The variance of Y in a particular segment and accident year is quadratic in X:

VarðYÞ ¼ b2r2½ð1� dÞ �XX þ dX2� M1Vð Þ

where �X ¼
PT

t¼1 Xt.

• Y follows a lognormal distribution lnðYÞ�Normalðl;xÞ where:

x ¼ ln f1þ r2½ð1� dÞ �XX þ dX2�g and l¼ln ðbXÞ � x
2

M1Dð Þ

• Maximum likelihood estimation is appropriate. (ML)

3.1.1 M1M

Assumption M1M could be tested using a linear regression analysis between E½Y�
and X. If we assume that Yt are unbiased estimates of E½Y�, the analysis could be

made using through the linear regression model:
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Yt ¼ b0 þ b1Xt þ et t ¼ 1; 2; . . .; T ð16Þ

where the error term e in the linear regression model is independent of X, and is

normally distributed, with zero mean and constant variance. We could establish if

there is any significant relationship between X and Y using for example the F-test

for regression.1

3.1.2 M1V

Whatever is the estimator of variance adopted, for the estimate and the validation of

the model we can use, as for the hypothesis test on the average, the classic linear

regression techniques.

3.1.3 M1D

According to the hypothesis M1D, we have to demonstrate that:

flnYt; t ¼ 1; 2; . . .; Tg

is a sample from a normal distribution. In statistics, normality tests are used to

determine if a data set is well-modeled by a normal distribution and to compute how

likely a random variable underlying the data set is normally distributed. It should be

noted that the low sample size available in these applications might cause that

normality is accepted although it is absent.

The idea behind the goodness of fit tests is to measure the ‘‘distance’’ between the

data and the distribution that should be tested, and compare that distance to a

threshold value. If the distance (called the test statistic) is less than the threshold

value (the critical value), the fit is considered good.

In order to test hypothesis M1D both algorithmic and graphical tests could be

adopted. The logic of applying various goodness of fit tests is the same, but they

differ by methods used to calculate the test statistic and critical values.

Following the De Felice and Moriconi [8] and EIOPA [10], we summarize main

tests applied in this framework. The algorithmic tests assume the normality of the

data as a null hypothesis (H0), and define an appropriate statistical test to

discriminate with respect to the alternative hypothesis—non-normality (H1). In this

context, a low value of the p value means that there is a low level of confidence that

the data are really normal distributed.

Independently of the size of the sample used, the test of normality based on the p

value, although it could provide decisive evidence in the sense of rejection of H0, it

could not be decisive in the sense of acceptance of H0.

Among the algorithmic tests of normality, Kolmogorov–Smirnov test is a non-

parametric test, based on the Empirical Distribution Function. Various studies have

1 In R this test is very simple to implement: we could apply the lm function and then we calculate the

F-statistics of the significance test with the summary function. If the p value is much less than 0.05, we

reject the null hypothesis that b1 = 0 and concluding that there is a significant relationship between the

variables in the linear regression model of the data set used. The R function lm is used to fit linear models.

It can be used to carry out regression, single stratum analysis of variance and analysis of covariance.
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found that this test is less powerful for testing normality than the Shapiro–Wilk test

or Anderson–Darling test, because in order to reject appropriately null hypothesis

many observations have to be used.

However, other tests have their own disadvantages. For instance, the Shapiro–

Wilk test does not work well with many ties (many identical values). It is built on

the comparison of the variance estimator based on linear combination of order

statistic of a normal variable and the traditional sample variance. The statistic W is

the ratio of this estimator: being the null-hypothesis of this test that the population is

normally distributed, it can be rejected if W is below a predetermined threshold.

Finally, Jarque–Bera test aims to establish simultaneously if the skewness and

kurtosis estimated on the data are consistent with the hypothesis of normality. If the

data come from a normal distribution, the JB statistic asymptotically has a Chi-

squared distribution with two degrees of freedom, so the statistic can be used to test

the hypothesis that the data are from a normal distribution. The null hypothesis is a

joint hypothesis of the skewness being zero and the excess kurtosis being zero.

There are also graphical methods to test normality. An informal approach is to

compare a histogram of the sample data to a normal probability curve. The

empirical distribution of the data (the histogram) should be bell-shaped and

resemble the normal distribution. This might be difficult to see if the sample is

small, as for USP calculation. Another graphical tool for assessing normality is the

normal probability plot, a quantile–quantile plot (QQ plot) of the standardized data

against the standard normal distribution. Here the correlation between the sample

data and normal quantiles measures how well the data are modeled by a normal

distribution. For normal data the points plotted in the QQ plot should fall

approximately on a straight line, indicating high positive correlation. These plots are

easy to interpret and also have the benefit that outliers are easily identified.

Likewise, a PP plot (probability–probability plot or percent–percent plot) is a

probability plot for assessing how closely two data sets agree, which plots the two

cumulative distribution functions against each other. See De Felice and Moriconi

[8] and EIOPA [10] for more details, where the authors underline that M1M, MIV

and M1D assumptions are not easily verifiable in presence of a limited set of data

that is the typical issue of an individual undertaking.

3.1.4 ML

The hypothesis of maximum likelihood estimation appropriate is easily verifiable as

directly derivable from convergence of the minimization procedure. The uniqueness

of the minimum derived by optimization could be tested empirically studying the

nature of the criterion function. For example, its regularity could be shown through

a tridimensional graph. More simply, in the following paragraphs we will transform

the criterion function into a two-dimensional function taking the grid of values that

can be assumed by d and c. DA establishes itself the variation range of mixing

parameter, while logarithmic variation coefficient has not constraints. However it is

always negative being it the logarithm of a real number belonging to [0,1]. The

graph below represents a typical volatility surface (see Fig. 1).
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3.2 Method 2

Also in this case we follow the De Felice and Moriconi [8] notation. The data for

method 2 implementation have to be consistent with the following assumptions

about the stochastic nature of cumulative claims amounts:

• For all accident years the implied incremental claim amounts (as also

cumulative claims amounts) are stochastically independent (M2I);

• For all accident years the expected value of the cumulative claims amount for a

development year is proportional to the cumulative claims amount for the

previous development year (M2M);

• For all accident years the variance of the cumulative claims amount for a

development year is proportional to the cumulative claims amount for the

previous development year (M2V).

Hypothesis M2M and M1M may be grouped together in a single hypothesis. If

we denote with B0 :¼ fC0;0;C0;1; . . .;C0;Ig claims amount paid in the first

development year M2M and M2V could be merged in the ‘‘time series hypothesis’’

(M2MV-Time Series Chain Ladder). There are two constants such that fj [ 0 e

rj [ 0 and ei;j random variables, such that for 1� j� J and for 1� i� I:

Ci;j ¼ fj�1Ci;j�1 þ rj�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ci;j�1ei;j
p

ð17Þ

where ei;j are conditionally independent given B0 and identically distributed, with

mean E½ei;jjB0� ¼ 0 and variance Var½ei;jjB0� ¼ 1.

3.2.1 M2MV

The expression (17) for each j ¼ 1; . . .; J � 1 is a linear regression model referred to

observations of two consecutive development years. If we define xi ¼ Ci;j�1, yi ¼
Ci;j and xi ¼ 1=xi ¼ 1

	

Ci;j�1, the J weighted linear regressions are:

Fig. 1 The shape of a volatility surface r(d,c). Source De Felice and Moriconi [8]
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yi ¼ bxi þ
r
ffiffiffiffiffi

xi
p ei i ¼ 0; 1; . . .; I ð18Þ

The least squares estimator of regression coefficient is:

b̂ ¼
Pn

i¼1 xixiyi
Pn

i¼1 xix
2
i

ð19Þ

This expression coincides with Chain Ladder factor estimator f̂J .

Moreover, the estimated variance of the error terms is:

r̂2 ¼ SSE

n� 1
ð20Þ

where:

SSE ¼
X

n

i¼1

xiðyi � xib̂Þ2 ð21Þ

This expression, instead, is equal to the estimator r̂2j of Distribution Free Chain

Ladder (Mack [18]).

The traditional hypothesis and goodness of fit tests available in the software R

may be used to establish the adherence of the model to the data, thus providing a test

for hypothesis M2MV. The main issue for the individual undertaking is the lack of

data in order to get all the J regressions required (working with run-off triangles).

3.2.2 M2I

A method to test the independence between different accident years is to test the

independence of the residuals derived from the equation time series (17). The idea,

proposed also by Merz and Wüthrich is to verify, by means of a linear regression

analysis, the absence of trend in the residuals in function of the accident years. The

independence between the residuals of different accident years for a specific

development year is already implicit as a result of the regression analysis performed

for hypothesis M2MV. Pearson residuals test and/or empirical/simulation analysis

could be an alternative. See De Felice and Moriconi [8] for more details.

4 Undertaking specific parameters calibration: algorithms in R

Method 1 for both premium and reserve risks has the same implementation

algorithm having the same mathematical formulation: input data and market wide

standard deviations are the only differences.

The first step is to define two vectors of input data: xt and yt, where each

component of both vectors is referred to a specific accident year for premium risk or

a specific financial year for reserve risk.
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The second step is to define functions involved in USP estimation: r̂ ; pt and the

objective function that has to be minimized in order to obtain mixing parameter d̂
and logarithmic variation coefficient ĉ; both r̂ and pt functions will be then

evaluated in ðd̂; ĉÞ.
For optimization purpose, the R function optim of library stats allows choosing

different optimization methods: Nelder-Mead, BFGS, L-BFGS-B, SANN, etc. In

this paper, we use method BFGS that is a quasi-Newton method also known as a

variable metric algorithm and, after giving an initial value, uses function values and

gradients to build up a picture of the surface to be optimized. Unlike L-BFGS-B

method, the method used does not allow box constraints. However, as mentioned

above for the determination of the minimum no values for the mixing parameter

outside the closed interval [0,1] shall be considered.2 For this reason, we make a

change of variables using logit function:

y ¼ logitðxÞ ¼ logðx=ð1� xÞÞ with DðyÞ : ½�Inf ;þInf � ð22Þ

having:

x ¼ 1=ð1þ expð�yÞÞ with DðxÞ : ½0; 1� ð23Þ

Once obtained the mixing parameter and the logarithmic variation coefficient

through optimization, we are able to get r̂ estimation. USP is achieved combining

this estimation with market wide standard deviation for the specific risk considered,

as seen in previous paragraphs.

The calibration of USP through run-off triangle type method for reserve risk

(method 2) needs a different algorithm. In this case, undertaking specific standard

deviation (before linear combination with market wide standard deviation) is

represented by the ratio between the square root of MSEP and a value that is nothing

more than the estimated reserve with Chain Ladder method.

As already seen input data shall consist of cumulative claims amounts separately

for each accident year and development year of the payments, so we make in R a

matrix of input data. Through this matrix, we can easily obtain both a vector with

cumulative payment estimates for all accident years at the latest development year

Ĉði;JÞ, and also the values Cði;I�iÞ, with i ¼ 0; . . .; I. Therefore, we are able to

estimate undertaking specific standard deviation which provides USP for reserve

risk once combined linearly with market wide standard deviation of reserve risk.

5 Empirical studies

We illustrate USP results in the following application, comparing DA and QIS5

results. We consider three companies: A, B and C, with respectively small medium

and large size regarding the segment Motor Vehicle Liability (MVL). For this

segment the market wide standard deviations in the DA are:

2 If we use L-BFGS-B method with box constraints rather than BFGS method, we would get almost the

same results.
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• Premium risk-gross of reinsurance: 10 % (same value in the QIS5)

• Reserve risk-net of reinsurance: 9 % (9.5 % in the QIS5).

It is worth mentioning that we analyzed pseudo data derived from the sample of

the 18 Italian insurance companies which participated to joint work of ANIA and

Towers Watson (see Cerchiara and Santoni [6]), with 11 accident and financial

years data available for each company. According to the method 1, both for

premium and reserve risk, the first step is to calculate mixing parameter and

logarithmic variation coefficient through optimization. After that we are able to

calculate the standard deviations and combine them with market wide standard

deviations through the credibility approach in order to get USP.

5.1 Method 1: premium risk

5.1.1 Mixing parameter and logarithmic variation coefficient

In the following table we show the values of variables d and c that minimize

objective function (7) for each company (see Table 1).

Logarithmic variation coefficient c always assumes negative values, being the

natural logarithm of a value belonging to the interval [0,1] and it depends on the

company size.

We can also observe that the values assumed by mixing parameter d for company

B and C are very close to 0 (the inferior extreme of its domain).3

If we use Nelder-Mead method or L-BFGS-B method rather than using BFGS

method for optimization, we get the same results. In particular, L-BFGS-B method

allows box constraints for parameters that have to be minimized and this make

unnecessary logit transformation: thereby the values of mixing parameters that with

Nelder-Mead or BFGS method are approximately equal to 0 and 1, with L-BFGS-B

method are exactly equal to 0 and 1.

If the objective function depend on only one variable, this trend to be addressed

to the upper (or lower) edge of its domain could be justified arguing the decreasing

(or increasing) nature of the same function. Depending it on d and c and not being

R2 an ordered set, we can not argue it. However, making some changes without

change the nature of the function we can proceed with a graphical analysis.

In particular, we fix a grid of equidistant values between 0 and 1 assumed by

mixing parameter: in this way objective function depends only by c, in function of

which we will minimize. The graphs obtained are the following (see Fig. 2).

Table 1 Mixing parameter and logarithmic variation coefficient for each undertaking

Undertaking A (small) Undertaking B (medium) Undertaking C (large)

d 0.6360 0.0058 0.0026

c -2.3024 -2.7327 -3.0223

3 For many others companies analyzed in Cerchiara and Santoni [6] (not shown in this paper) mixing

parameter assumes values very close to 1, the superior extreme of the domain.
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A sensitivity analysis performed on functions involved in USP calculation shows

as, being equal logarithmic variation coefficient, the value assumed by mixing

parameter does not affect (or better affects with an order never less than 104) the

value assumed by the same functions and so neither USP. To prove it, we consider

company A data, for which mixing parameter and logarithmic variation coefficient

are the following:

• d = 0.6360

• c = -2.3024

The Table 2 contains the values of function (5) evaluated with these values:

So by the formulas (3) and (4), we have r̂ = 0. 6862 and USP = 8.2 %.

Now let a be a vector of ten equally spaced points in the interval [0,1] within

which mixing parameter varies. The values of function (5) evalued in each element

of the vector are the rows of the following matrix (see Table 3).

Having considered a vector of mixing parameters and not a single value, we

obtain as many standard deviations as vector a components (see Table 4).

So, the values r̂ða;�2:302449Þ with a ¼ 0; 0:1; . . .; 1 differ from them and

r̂ð0:068624;�2:302449Þ of not more than 0.003 % (difference between the biggest

and the smallest components).

Fig. 2 Objective function trend
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This is also argued by graphical analysis that shows an almost constant trend of

standard deviation by varying mixing parameters (see Fig. 3).

It should be useful to remember the USP calculation formula for premium risk

(3):

rðprem;s;USPÞ ¼ c � r̂ðd̂; ĉÞ �
ffiffiffiffiffiffiffiffiffiffiffiffi

T þ 1

T � 1

r

þ ð1� cÞ � rðprem;sÞ

In this formula, the only function influenced by mixing parameter is r̂ðd̂; ĉÞ,
while other variables are fixed or established by DA. This means that r̂ðd̂; ĉÞ
behavior is totally reflected on USP behavior (see Table 5).

In fact, also in this case the differences among the components of USPs vector

(one for each component of mixing parameter vector) are neglectable because

always less than 0.003 %. This is argued also by graphical analysis (see Fig. 4).

Concluding, the sensitivity analysis performed shows as, fixed logarithmic

variation coefficient and mixing parameter variation range imposed by DA, the

value assumed by USP is not influenced by that of mixing parameter.

5.1.2 Results

In the following table are summarized USP for premium risk, after application of

credibility factors combining undertaking standard deviation and market wide

Table 2 The values of function pt for each year with d = 0.6360 and c = 22.3024

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

pt 111.07 104.68 100.62 97.76 96.22 97.58 99.17 97.66 94.71 101.25

Table 3 The values of function (5) evalued in each element of vector a

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

a = 0.0 136.21 112.95 100.87 93.37 89.60 92.92 96.97 93.12 86.09 102.63

a = 0.1 131.53 111.57 100.83 94.03 90.58 93.62 97.31 93.81 87.34 102.40

a = 0.2 127.16 110.21 100.79 94.71 91.58 94.34 97.65 94.50 88.63 102.19

a = 0.3 123.07 108.89 100.75 95.39 92.60 95.06 98.00 95.21 89.95 101.97

a = 0.4 119.23 107.60 100.71 96.08 93.65 95.80 98.34 95.93 91.32 101.75

a = 0.5 115.63 106.35 100.67 96.79 94.72 96.55 98.69 96.66 92.72 101.54

a = 0.6 112.24 105.12 100.63 97.50 95.89 97.31 99.04 97.40 94.18 101.32

a = 0.7 109.06 103.91 100.59 98.23 96.94 98.08 99.40 98.15 95.67 101.11

a = 0.8 106.03 102.74 100.55 98.97 98.09 98.86 99.75 98.91 97.22 100.90

a = 0.9 103.18 101.59 100.51 99.71 99.27 99.66 100.11 99.68 98.82 100.68

a = 1.0 100.47 100.47 100.47 100.47 100.47 100.47 100.47 100.47 100.47 100.47
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Table 4 The values of function

(4) evalued in each element of

vector a

a r

0.0 0.06866

0.1 0.06865

0.2 0.06864

0.3 0.06864

0.4 0.06863

0.5 0.06863

0.6 0.06862

0.7 0.06862

0.8 0.06862

0.9 0.06862

1.0 0.06862

Fig. 3 Standard deviations in function of mixing parameters

Table 5 The values of USPs

for each element of vector a
a USP

0.0 0.08217

0.1 0.08216

0.2 0.08216

0.3 0.08215

0.4 0.08215

0.5 0.08214

0.6 0.08214

0.7 0.08214

0.8 0.08214

0.9 0.08214

1.0 0.08214
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parameter (10 % in both QIS5 and DA). Each row is split in two sub-rows: in the

upper there are the results of DA calibration methods, in the lower QIS5 calibration

methods results (see Table 6).

We can see that the QIS5 result of the third method (frequency-severity

approach, see Gisler [16] and CEIOPS [4]) for the undertaking A is the only one

over the market wide standard deviations. Reasonably, USP are decreasing with

increasing undertaking size, with a difference of 2.7 % between the biggest and the

smallest.

The general consideration regarding these results is that whatever is the company

size, they always are lower than DA market wide standard deviations which is 10 %

for the Lob MVL. So USP approach produces a smaller SCR than SF approach for

each company.

5.2 Method 1: reserve risk

5.2.1 Mixing parameter and logarithmic variation coefficient

As made for premium risk but using reserve risk data, through optimization we

attain the following results for mixing parameter d and logarithmic variation

coefficient c.
For reserve risk we have the same considerations made for mixing parameter and

logarithmic variation coefficient for premium risk. In fact, also in this case the

values assumed by mixing parameter are very close to the lower extreme of its

definition domain, depending it on objective function behavior. To prove it

Fig. 4 The values of USPs for each element of vector a

Table 6 USP for premium risk, after application of credibility factors

Undertaking A Undertaking B Undertaking C

(small) (%) (medium) (%) (large) (%)

USP 8.2 6.5 5.5

7.7, 7.4, 11.0 6.1, 4.1, 6.6 5.3, 5.1, 6.7
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graphically, as done for premium risk, we fix a grid of equidistant values between 0

and 1 assumed by mixing parameter so that objective function depends only by c. In
this way, being it a one-variable function, we can analyze its increasing or

decreasing nature. The graphs obtained are the following (see Fig. 5).

Each graph shows the reliability of results shown in Table 7 for each undertaking

considered. Also for reserve risk the sensitivity analysis shows that, being equal

logarithmic variation coefficient, the value assumed by mixing parameter affects the

USP obtained with an order not less than 104.

To prove it, we consider undertaking A data. As we can see in Table 7, mixing

parameter and logarithmic variation coefficient obtained through optimization are

the following:

• d = 0.0008

• c = -2.8134

Fig. 5 Objective function trend

Table 7 Mixing parameter and logarithmic variation coefficient for each undertaking

Undertaking A Undertaking B Undertaking C

(small) (medium) (large)

d 0.0008 0.0006 0.0049

c -2.8134 -3.1079 -3.2230

R. R. Cerchiara, V. Demarco

123



The Table 8 contains the values of function (5) evaluated with these values:

So by the formulas (3) and (4), we have r̂ = 0.6995 and USP = 8.2 %.

Now let a be a vector of ten equally spaced points in the interval [0,1] within

which mixing parameter varies. The values of function (5) evalued in each element

of the vector are the rows of the folliwing matrix (see Table 9).

For each component of vector a we have an undertaking specific standard

deviation (before combination with market wide standard deviation) (see Table 10).

So, the values r̂ða;�2:81343Þ with a ¼ 0; 0:1; . . .; 1 differ among them and

r̂ð0:00085; �2:81343Þ of not more than 0.19 % (difference between the biggest

Table 8 The values of function pt for each year with d = 0.0008 and c = -2.8134

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9

pt 311.64 280.05 267.49 252.77 239.6 288.81 304.16 296.83 263.22

Table 9 The values of function (5) evalued in each element of vector a

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

a = 0.0 311.67 280.05 267.48 252.75 239.57 288.82 304.19 296.85 263.21 311.67

a = 0.1 307.97 279.87 268.53 255.09 242.95 287.73 301.38 294.88 264.64 307.98

a = 0.2 304.37 279.70 269.58 257.47 246.43 286.65 298.63 292.94 266.09 304.37

a = 0.3 300.84 279.52 270.64 259.90 250.00 285.58 295.93 291.03 267.56 300.84

a = 0.4 297.40 279.34 271.70 262.38 253.69 284.52 293.27 289.14 269.04 297.40

a = 0.5 294.03 279.17 272.78 264.90 257.48 283.46 290.66 287.27 270.54 294.03

a = 0.6 290.74 279.00 273.86 267.48 261.39 282.41 288.10 285.43 272.05 290.74

a = 0.7 287.53 278.81 274.96 270.10 265.42 281.37 285.58 283.61 273.59 287.53

a = 0.8 284.38 278.64 276.06 272.77 269.57 280.33 283.11 281.81 275.14 284.38

a = 0.9 281.30 278.46 277.167 275.50 273.86 279.31 280.68 280.04 276.70 281.30

a = 1.0 278.29 278.29 278.29 278.29 278.29 278.29 278.29 278.29 278.29 278.29

Table 10 The values of

function (4) evalued in each

element of vector a

a r

0.0 0.06995

0.1 0.06997

0.2 0.06999

0.3 0.07

0.4 0.07002

0.5 0.07004

0.6 0.07006

0.7 0.07008

0.8 0.0701

0.9 0.07012

1.0 0.07014
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and the smallest components). Also a graphical analysis (Fig. 6) shows as

r̂ða;�2:81343Þ takes almost the same values for each value of vector a.
The calculation formula of USP for reserve risk is:

rðres;s;USPÞ ¼ c � r̂ðd̂; ĉÞ �
ffiffiffiffiffiffiffiffiffiffiffiffi

T þ 1

T � 1

r

þ ð1� cÞ � rðres;sÞ

For the same reasons of premium risk, the standard deviation behavior is totally

reflected on USPs that assume almost the same values for each component of vector

a (Table 11; Fig. 7).

Concluding, the sensitivity analysis performed shows as also for reserve risk,

fixed logarithmic variation coefficient and mixing parameter variation range

imposed by DA, the value assumed by USP is not influenced by that of mixing

parameter.

5.2.2 Results

In the following table are summarized USP for reserve risk (we call them USP1 to

distinguish them from method 2 for reserve risk results), after application of

Fig. 6 Standard deviations in function of mixing parameter

Table 11 The values of USPs

for each element of vector a
a USP

0.0 0.0821

0.1 0.08211

0.2 0.08213

0.3 0.08214

0.4 0.08215

0.5 0.08217

0.6 0.08218

0.7 0.0822

0.8 0.08221

0.9 0.08223

1.0 0.08224
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credibility factors combining entity standard deviation and market wide parameter

(9.5 % in the QIS5 and 9 % in the DA) (see Table 12).

About USP behavior we notice that, reasonably, USPs are decreasing with

increasing undertaking size, with a difference of 2.7 % between the biggest and the

smallest. USPs are always lower than DA market wide standard deviations (this is

not always true for company A under QIS5), producing a reduction in SCR adopting

USP approach.

5.3 Method 2: reserve risk

Implementing method 2 for reserve risk, we obtain the results reported in Table 13.

In the same table, as done for method 1 (both for premium and reserve risks), there

are DA and QIS5 results. We use USP2, in order to distinguish from USP1 derived

from method 1 for the same risk.

Finally, in Table 14 we resume the USPs of both methods for reserve risk

considering the DA framework.

Fig. 7 The values of USP for each element of vector a

Table 12 USP for reserve risk (method 1), after application of credibility factors

Undertaking A Undertaking B Undertaking C

(small) (%) (medium) (%) (large) (%)

USP USP1 = 8.2 USP1 = 6.0 USP1 = 5.5

17.2, 11.8, 7.5 5.7, 6.6, 6.6 7.5, 6.0, 4.8

Table 13 USP for reserve risk (method 2), after application of credibility factors

Undertaking A Undertaking B Undertaking C

(small) (%) (medium) (%) (large) (%)

USP USP2 = 7.3 USP2 = 6.5 USP2 = 4.6

17.2, 11.8, 7.5 5.7, 6.6, 6.6 7.5, 6.0, 4.8
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This comparison shows that the two methods (for the same risk) give similar

results. However, whatever is method chosen, USP obtained are lower than market

wide standard deviation (9 %), producing a reduction in SCR.

5.4 Sensitivity analysis

The tables below show the results of different sensitivity analysis conducted to

demonstrate how these methods are closely linked to the individual data used but

sometimes fail to catch the business trends of the company. The analysis have been

conducted using medium size company (B) data, but same comments could be made

for undertakings A and C (see Table 15).

For premium risk method, assuming a growing business with a positive technical

trend (which results in a decrease of losses or an increase of earned premiums)

volatility is not reduced, but rather increased.

Moreover, just one peak in the time series considered, whether premium or

aggregate losses, results in a significant increase of estimated volatility. This is still

true if total premiums vary significantly between different accident years.

The length of the time series used is a key factor in the estimation of USP: it is a

multiplicative factor in USP formula (see formula (3) and (8)) which is significantly

reduced if the number of years (T) used grows. Besides, as seen before, the bigger

the length of time series the greater is the credibility given to undertaking specific

standard deviation than market wide standard deviation. In particular, the sensitivity

analysis which adds 5 years (T ? 5) to the original time series gives full credibility

to undertaking specific standard deviation and null credibility to market wide

standard deviation, being its length 16 years.

Table 14 USP for reserve risk
Undertaking A Undertaking B Undertaking C

(small) (%) (medium) (%) (large) (%)

USP USP1 = 8.2 USP1 = 6.0 USP1 = 5.5

USP2 = 7.3 USP2 = 6.5 USP2 = 4.6

Table 15 Sensitivity

analysis—premium risk method
Premium risk USP (%)

Original data 6.5

Peak on aggregated losses 10.6

Peak on earned premium 7.6

Decreasing losses 15.1

Increasing losses 5.1

Increasing earned premium 6.7

Decreasing earned premium 14.6

Decreasing losses and increasing earned premium 15.2

T ? 1 6.0

T ? 5 4.6

R. R. Cerchiara, V. Demarco

123



Loss ratio analysis shows that in some cases it does not affect the USP values, i.e.

considering a shock (?10 % in each accident year) USP value does not change.

Method 1 tends to produce a higher USP factor when the experienced claims

ratios have varied relatively substantially over the period over which the USPs have

been calculated. For example, if the shock has an impact only on the last year, in

which loss ratio moves from 79 to 97 %, USP increase of about 2 %.

The same sensitivity analysis applied to method 1 for reserve risk leads us to

similar considerations (see Table 16).

About method 2 for reserve risk, simulating a significant increase in the

cumulative claims amount for a specific claim and in a particular development year

(e.g. due to a court decision for several deaths from the same claim), we have a

significant increase in the USP, due to the high increase in the MSEP (see Table 17).

6 Conclusion

The use of USP has to be submitted to an approval process to the supervisor that

needs evidence of data quality, that the USP better reflects the company’s risk

profile and that the assumptions of methods are met. These tests are not always easy

to implement for a single undertaking, as shown before, especially with lack of data.

Using USP the final result is not always guaranteed a capital gain for the company,

due to the fact that USP obtained both for premium and reserve risks are closely

linked to data distribution and the final results depend by the length of the time

series. In particular, for all methods just one peak in time series could lead to biased

standard deviation. So from year to year USP results can change dramatically, not

more producing SCR reduction.

Table 16 Sensitivity

analysis—reserve risk method 1
Reserve risk USP (%)

Original data 6.0

Peak on claims development 9.0

Peak on opening reserve 9.6

Increasing opening reserve 8.0

Decreasing opening reserve 9.4

Decreasing claims development result 10.4

Increasing claims development result 7.1

T ? 1 5.5

T ? 5 3.9

Table 17 Sensitivity analysis—reserve risk method 2

Reserve risk USP (%)

Original data 6.5

Peak of a cumulative claims amount 18.6
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Below we summarize the main findings from the case studies in the table and

further comments (see Table 18).

Premium risk method 1 tends to produce a higher USP factor when one or more

of the following factors apply:

• Total premiums vary significantly between different policy years.

• The experienced claims ratios are relatively high.

• The experienced claims ratios have varied relatively substantially over the time

series period from which the USPs have been calculated.

• The company has had the practice of allocating relatively prudent claims

reserves for a underwriting year at the end of the first development year.

• Especially for small company, a single policy year of adverse claims experience

can have a material effect on the value of the calculated USP.

Reserve risk method 1 essentially involves reviewing the run-off of the claims

provisions, based only on the company’s own view of its claims provisions. In

summary, the company’s claims provision for a policy year at the start of a financial

year is compared with the sum of the company’s own claims provision at the end of

the financial year plus claims paid during the financial year. Reserve risk method 1

tends to produce a higher USP factor when the actual run-off of claims is different

from that initially expected. Besides as shown in Bulmer [3] and Cerchiara and

Santoni [6], it should be noted that a favourable reserve run-off produces the same

reserve risk factor as an unfavourable reserve run-off.

Reserve risk method 2 is a method based on the MSEP of the Claims Development

Result over a 1 year time horizon. The calculated mean squared error is divided by

the company’s own claims provision to calculate the reserve risk factor.

Another interesting outcome from the case studies is that once determined

logarithmic variation coefficient and mixing parameter variation range (set by DA),

the USP value is not influenced by mixing parameter d. In ‘‘Calibration of the

Premium and Reserve Risk Factors in the Standard Formula of Solvency II’’ we can

read: ‘‘It is good to remember that with d = 0 the probability distribution of y will

become bell-shaped approaching a normal distribution under the forces of the

central limiting law. When d[ 0 a mixing operation enters the scene that at best

results in a mixed normal distribution, which in general will have more heavy tails,

such as these of the Student distribution.’’ So, d reflects the shape of the distribution,
but it doesn’t seem relevant for USP values considering our numerical results. This

issues will be investigated in further research on other data set.

Table 18 Comparison of stressed scenarios
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Finally it is worth mentioning that the use of USP could be very useful also

regarding the Own Risk Solvency Assessment (ORSA, see European Parliament

[15]) when the undertaking have to identify whether the company risk profile

deviates from the assumptions underlying Standard Formula. A better understanding

and management of the specific risk profiles could lead to a lower but nevertheless

eligible capital requirement. To this end, a strategic choice could be the adoption of

Standard Formula with USP, but taking into account a priori the possible effects on

the results from the change in underwriting, premium rates, merger and acquisition,

because cherry picking is not admitted (switch from SF with USP to SF have to be

approved by the supervisor, e.g. when SF with USP do not more reduce the SCR).
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