
Gaussian Process Regression for Pricing Variable Annuities with Stochastic Volatility and Interest Rate

Gaussian Process Regression for Pricing Variable Annuities
with Stochastic Volatility and Interest Rate

Antonino Zanette

University of Udine (Italy)

22 May 2019-AFIR ERM 19 Florence
From joint works with:
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Gaussian Process Regression for Pricing Variable Annuities with Stochastic Volatility and Interest Rate

Introduction

In this talk we present an efficient approach based on a Machine
Learning technique which allows one to quickly evaluate insurance
products considering stochastic volatility and interest rate.

Specifically, following De Spiegeleer et al. 2018, we apply Gaussian
Process Regression to compute the no-arbitrage fee and the Greeks
of a GMWB Variable Annuity.

First of all, we price the securities by means of the Hybrid Tree PDE
approach.

Then, we apply the Gaussian Process Regression technique to make
fast prediction of the prices.
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Introduction

The regression algorithm consists of two main steps: algorithm
training and evaluation.

The training step is the most time demanding, but it needs to be
performed only once.

The evaluation step is very fast and it requires to be performed
only when making predictions.

We consider three increasing complexity models, namely the
Black-Scholes, the Heston and the Heston Hull-White models,
which extend the sources of randomness up to consider stochastic
volatility and stochastic interest rate together.

Numerical experiments show that the accuracy of the estimated
values is high, while the computational cost is much lower than the
one required by a direct calculation with standard approaches.
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The stochastic models

The stochastic models

We focus on the following stochastic models :

The Heston model{
dSt = rStdt +

√
VtStdZ

S
t S0 = S̄0,

dVt = k (θ − Vt) dt + ω
√
VtdZ

V
t V0 = V̄0,

(1)

where ZS and ZV are Brownian motions, and d
〈
ZS
t ,Z

V
t

〉
= ρdt.

The Heston Hull-White Model
dSt = rtStdt +

√
vtStdZ

S
t

drt = kr (θr (t)− rt) dt + ωrdZ
r
t ,

dvt = kv (θv − vt) dt + ωv
√
vtdZ

v
t ,

θt is a deterministic function which is completely determined by the
market values of the zero-coupon bonds by calibration.
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Variables Annuities

Variables Annuities

Variable Annuities are unit-linked life insurance contracts with
investment guarantees which, in exchange for single or regular
premiums, allow the policyholder to benefit from the upside of the
market, but be partially or totally protected when the unit loses
value.

To mitigate the policyholder exposure and to offer additional types
of benefits, various forms of guarantees, such as guaranteed
minimum death benefit, guaranteed minimum income benefit,
guaranteed minimum withdrawal benefit, and guaranted lifetime
withdrawal benefit are commonly embedded into the contracts.
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Variables Annuities

The GMWB contract

At time t = 0 the PH pays the premium P to the insurance
company. The premium P is invested in a fund.

The contract guarantees a minimum amount to be withdrawn, even
if the account value A declines to 0.

Immediately after the last event time, the PH receives a final payoff
and the contract ends.

The contract state parameters at a given time t are the account
value At and the base benefit Bt .

Let V (A,B, v , t) be the fair value of the considered GMWB

contract at time t (under risk neutral probability), considering the

Heston model, and V (A,B, v , r , t) considering the

Heston-Hull-White model.
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Variables Annuities

Evolution of the Contract between Event Times.

The account value At - the risky account - is determined according
to the following relation:

dAt =
At

St
dSt − αAtdt. (2)
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Variables Annuities

Event Times

During the event times, the PH is entitled to withdraw a minimum
guaranteed amount G (usually G = P/N) from his account.

Let Wi represent the amount withdrawn at time ti , which is
required to be non-negative and smaller than the base benefit B

t
(−)
i

.

If the amount withdrawn Wi is lower than G , then there is no
penalty imposed.

If Wi is higher than G , a proportional penalty charge κi (Wi − G ) is
imposed, which reduces the amount actually received by the PH.
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Variables Annuities

Final Payoff

The contract state variables just after the withdrawal updated
as follows:(

A
t

(+)
i

,B
t

(+)
i

, u
t

(+)
i

, ti
)

=

((
A
t

(−)
i

−Wi

)
+
,B

t
(−)
i

−Wi , ut(−)
i

, ti

)
.

(3)

After the last event time tN has occurred, the PH receives the
final payoff, which is worth

FP = max (AT , (1− κN)BT ) , (4)

and the contract terminates.
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Variables Annuities

Withdrawals

As far as the withdrawal strategy is concerned, we consider
dynamic withdrawals. The PH chooses Wi in order to maximize
the total wealth. The following dynamic control problem has to be
solve:

Wi = argmax

wi∈
[

0,B
t
(−)
i

] V
(

max

(
A
t

(−)
i

− wi , 0

)
,B

t
(−)
i

− wi , uti , t
+
i

)
+ fi (wi ) . (5)

where

fi (Wi ) =

{
Wi if Wi ≤ G

Wi − κi (Wi − G) if Wi > G .
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Hybrid Tree-Finite Difference method

Hybrid Tree-Finite Difference

In order to price the GMWB contracts, we employ the Hybrid Tree-Finite
Difference method, introduced by:

Briani, M., Caramellino, L., Zanette, A. (2018): ”A hybrid tree/finite-difference
approach for Heston-Hull-White type models”. The Journal of Computational Finance

The hybrid procedure :

a 2-dimensional binomial tree for the the pair volatility (V , r);

a finite difference approach in the S-direction.

L.Goudenege A.Molent A.Zanette (2016) Pricing and Hedging GLWB in the
Heston and in the Black-Scholes with Stochastic Interest Rate Models.
Insurance: Mathematics and Economics
L.Goudenege A.Molent A.Zanette (2019) Pricing and Hedging GMWB in the
Heston and in the Black-Scholes with Stochastic Interest Rate
Models.Computational Management Science
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Gaussian Process Regression

Gaussian Process Regression

Gaussian Process Regression (also known as GPR) is a class of
non-parametric kernel-based probabilistic models which represents
the input data as the random observations of a Gaussian stochastic
process.

The most important advantage of this approach is that it is possible
to effectively exploit a complex dataset which may consist of points
sampled randomly in a multidimensional space.
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Gaussian Process Regression

Gaussian process

A Gaussian process G is a collection of random variables defined on
a common probability space, any finite number of which have
consistent joint Gaussian distributions.

If xi ∈ RD for i = 1, . . . , n then (G (x1) , . . . ,G (xn))> is a random
Gaussian vector.

A Gaussian process is fully specified by its mean function µ (x) and
by its covariance function k (x, x′).
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Gaussian Process Regression

Training set

Now, let us consider a training set D of n observations
D = {(xi , yi ) |i = 1, . . . , n} where X = {xi |i = 1, . . . , n} ⊂ RD

denotes the set of input vectors and Y = {yi |i = 1, . . . , n} ⊂ R
denotes the set of scalar outputs.

These observations are modeled as the realization of the sum of a
Gaussian process and a noise source. Specifically,

yi = fi + εi (6)

where {fi = G (xi ) |i = 1, . . . , n} is a Gaussian process and
{εi |i = 1, . . . , n} are i.i.d. random variables.

Moreover, the distribution of f = (f1 . . . fn) is assumed to be given
by

f ∼ N (0,K (X ,X )) , (7)

where K (X ,X ) is a n × n matrix with K (X ,X )i,j = k (xi , xj).
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Gaussian Process Regression

Test set

Now, in addition, let us consider a test set X̃ of m points
{x̃j |j = 1, . . . ,m}. The realizations f̃j = G (x̃j) are not known but
rather we want to estimate them considering the observed
realizations of G in D.

The a priori joint distribution of y and f̃ =
(
f̃1 . . . f̃m

)
is given by

[
y

f̃

]
∼ N

[ 0n
0m

]
,

 K (X ,X ) + σ2
nIn K

(
X , X̃

)
K
(
X̃ ,X

)
K
(
X̃ , X̃

)  (8)
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Gaussian Process Regression

Test set

Since we know the values for the training set, we can consider the
conditional distribution of f̃ given y. It is possible to prove that the
conditional distribution of f̃|X̃ , y,X is Gaussian and given by

f̃|X̃ , y,X ∼ N
(
E
[
f̃|X̃ , y,X

]
,Cov

[
f̃|X̃ , y,X

])
, (9)

where

E
[
f̃|X̃ , y,X

]
= K

(
X̃ ,X

) [
K (X ,X ) + σ2

nIn
]−1

y (10)

and

Cov
[
f̃|X̃ , y,X

]
= K

(
X̃ , X̃

)
−K

(
X̃ ,X

) [
K (X ,X ) + σ2

nIn
]−1

K
(
X , X̃

)
.

(11)

Therefore, a natural choice consists in predicting the values f̃ through

E
[
f̃|X̃ , y,X

]
. Moreover, also confidence intervals for such a prediction

can be computed.
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Gaussian Process Regression

Covariance function

The covariance matrix K
(
X̃ , X̃

)
is given by

K
(
X̃ , X̃

)
i,j

= k (xi , xi )

where k is called the kernel (covariance) function .

We employ the Automatic Relevance Determination Squared
Exponential (ARD SE) kernel, which is given by

k (x, x′) = σ2
f exp

(
−1

2

D∑
k=1

(xk − x′k)
2

l2k

)
, (12)

The parameters σ2
f , l1, . . . , lD of the kernel function and σ2

n of the
noise are called hyperparameters and need to be estimated.
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Gaussian Process Regression

Maximum likelihood estimates

A common approach is to consider the maximum likelihood
estimates which can be obtained by maximizing the log-likelihood
function of the training data, that is by maximizing the following
function:

−1

2
log
(
det
(
K (X ,X ) + σ2

nIn
))
− 1

2
y>
[
K (X ,X ) + σ2

nIn
]−1

y. (13)
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Gaussian Process Regression

Basis functions

The mean function µ can be modeled using a set of basis functions,
such as polynomials. In particular, when we consider a linear basis,
the function µ is approximated via h (x)β, where
h (x) = (1, x1, . . . , xD) and β ∈ Rn+1 is a vector of coefficients
estimated via the observed data.
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Gaussian Process Regression

Testing step and training step

The development of the GPR model can be divided in the training
step and the evaluation step (also called testing step).

The training step only requires the knowledge of the training set D
and it consists in estimating the vector β, the hyperparameters and

the matrix product A =
[
K (X ,X ) + σ2

nIn
]−1

(y − µ (X )).

The evaluation step can be computed only after the training step
has been accomplished and it consists in obtaining the predictions

via the computation of µ
(
X̃
)

+ K
(
X̃ ,X

)
A.

We stress out that the training step is independent of the test set
X̃ . Thus one can store the values computed during the training step
and perform the evaluation step many times with a small
computational cost, which is O (n ·m).
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Applying the GPR to the GMWB Contract

GPR to the GMWB Contract : The training step

We aim to to apply the GPR method to GMWB products to speed
up the computation of the price and of the Greeks.

The modeling process starts by computing a training set D.

The predictor set X consists of n combinations of the product,
market and model parameters.

For each parameter combination, we compute the price and then,
observed data are passed to the GPR algorithm.
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Applying the GPR to the GMWB Contract

The evaluation step

Once the training step is finished, the model is ready to estimate
prices.

In order to asses the performances of the algorithm, we compare the
exact price with the GPR predicted price for the testing set
consisting m random combinations of the parameters.
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Numerical results

Numerical results
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Numerical results

Numerical results

The performance of the GPR algorithm is measured in terms of the
following indicators:

RMSE (Root Mean Squared Error)

RMSE =
√

1
m

∑m
i=1 (Y (xi )− YGPR (xi ))2

,

RMSRE (Root Mean Squared Relative Error)

RMSRE =

√
1
m

∑m
i=1

(
Y(xi )−YGPR (xi )

Y(xi )

)2

,

MaxAE (Maximum Absolute Error)
MaxAE = maxi |Y (xi )− YGPR (xi )|

MaxRE (Maximum Relative Error) MaxRE = maxi

∣∣∣Y(xi )−YGPR (xi )
Y(xi )

∣∣∣ .
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Numerical results

GMWB

The range of the parameters for a GMWB contract when considering the
Heston Hull-White model. (dimension d = 11)

Name Symbol Range Name Symbol Range

Premium P 100 Initial vol. v0 [0.02, 0.10]

Maturity T 10 years Rate of m.r. kv [1.40, 2.60]

Initial i.r. r0 [0.01, 0.03] Long run vol. θv [0.02, 0.10]

Rate of m.r. kr [0.05, 0.75] Volatility of vol. ωv [0.45, 0.75]

Volatility of i.r ωr [0.005, 0.10] Correlation ρv [−0.70,−0.40]

Correlation ρr [0.05, 0.35] Fees α [0.00, 0.10]

Penalty κ [0.00, 0.20]
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Numerical results

GMWB pricing results (Heston Hull-White model)

Size of training set 1250 2500 5000 10000 20000

RMSE 7.49e-02 5.91e-02 4.67e-02 4.31e-02 3.78e-02

Out-of-sample RMSRE 7.33e-04 5.79e-04 4.63e-04 4.23e-04 3.73e-04

prediction MaxAE 8.10e-01 6.28e-01 4.68e-01 3.06e-01 2.28e-01

MaxRE 7.69e-03 5.96e-03 4.51e-03 2.94e-03 2.23e-03

Speed-up ×420000 ×210000 ×110000 ×52000 ×26000
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Numerical results

Delta Computation (Heston Hull-White model)

RMSE 2.38e-03 1.86e-03 1.47e-03 1.19e-03 1.04e-03

Out-of-sample RMSRE 1.08e-02 7.86e-03 7.02e-03 5.63e-03 4.17e-03

prediction MaxAE 2.72e-02 1.83e-02 1.92e-02 1.27e-02 1.15e-02

MaxRE 4.13e-01 3.41e-01 3.22e-01 2.33e-01 2.15e-01

Speed-up ×410000 ×200000 ×100000 ×52000 ×26000
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Numerical results

No-arbitrage fee Computation (Heston Hull-White model)

Size of training set 1250 2500 5000 10000 20000

RMSE 1.02e-03 8.33e-04 7.19e-04 6.15e-04 5.62e-04

RMSRE 2.32e-02 1.91e-02 1.69e-02 1.47e-02 1.42e-02

MaxAE 1.52e-02 1.64e-02 1.51e-02 1.58e-02 1.12e-02

MaxRE 3.31e-01 2.72e-01 2.39e-01 2.33e-01 1.84e-01

Speed-up ×410000 ×200000 ×100000 ×52000 ×26000
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Numerical results

A last comparison

Heston Hull-White model (with Hybrid PDE)

Time and space steps 125× 125 250× 250 500× 500 1000× 1000

Price 102.31
(1.2e+0)

102.33
(1.6e+1)

102.34
(2.0e+2)

102.33
(3.0e+3)

Delta 0.3225
(1.2e+0)

0.3245
(1.6e+1)

0.3252
(2.0e+2)

0.3255
(3.0e+3)

No-arbitrage fee 701.73
(1.1e+1)

703.59
(9.8e+2)

703.68
(1.2e+3)

703.80
(1.8e+4)

Training time (Heston Hull-White model)

Size of training set 1250 2500 5000 10000 20000

Price 49 154 185 188 3219
Delta 32 110 128 142 3144

GPR prediction (Heston Hull-White model)

Size of training set 1250 2500 5000 10000 20000

Price 102.34
(8.5e−5)

102.33
(2.2e−4)

102.33
(4.6e−4)

102.33
(6.8e−4)

102.33
(1.3e−3)

Delta 0.3242
(8.4e−5)

0.3245
(1.9e−4)

0.3245
(4.2e−4)

0.3245
(7.4e−4)

0.3246
(1.4e−3)

No-arbitrage fee 702.34
(1.8e−2)

704.15
(1.9e−2)

704.05
(2.5e−2)

704.29
(2.8e−2)

704.71
(3.4e−2)
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Conclusion
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Conclusion

Conclusion

In this talk we have presented how Gaussian Process Regression can
be applied in the insurance field to address the problem of pricing
with stochastic volatility and stochastic interest rate.

The computational time is considerably reduced as the greater
computational effort is carried out during the training phase, which
must be performed only once.

Computing a single prediction is very fast and has a linear cost in
the number of input observations.

The same approach may be applied to all types of insurance
contracts for different models.

Machine Learning seems to be a very promising and interesting tool
for insurance risk management.
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Conclusion
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Conclusion

We present an efficient method to compute the price of American
basket options, based on Machine Learning and Monte Carlo
simulations.

Specifically, the options we consider are written on a basket of
assets, each of them following a Black-Scholes dynamics.

The method we propose is a backward dynamic programming
algorithm which considers a finite number of uniformly distributed
exercise dates.
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Conclusion

The value of the option is computed as the maximum between the
exercise value and the continuation value, which is approximated via
Gaussian Process Regression.

Specifically, we consider a finite number of points, each of them
representing the values reached by the underlying at a certain time.

First of all, we compute the continuation value only for these points
by means of Monte Carlo simulations and then we employ Gaussian
Process Regression to approximate the whole continuation value
function.

Numerical tests show that the algorithm is fast and reliable and it
can handle also American options on very large baskets of assets,
overcoming the problem of the curse of dimensionality.
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Conclusion

American options in the multi-dimensional BS model

The underlying process

Let S = (St)t∈[0,T ] denote the d-dimensional underlying process. Under
the risk neutral measure, such a model is given by the following equation

dS i
t = r S i

t dt + σi S
i
t dW

i
t , i = 1, . . . , d ,

with S0 = (s0,1, . . . , s0,d) ∈ Rd
+ the spot price, r the (constant) spot rate,

σ = (σ1, . . . , σd) the vector of volatilities, W a d-dimensional correlated
Brownian motion and ρij the instantaneous correlation coefficient

between W i
t and W j

t .
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Conclusion

Payoff

Moreover, let Ψ(ST ) denote the cash-flow associated with the option.

Price

Thus, the price at time t of an American option having maturity T and
payoff function Ψ : Rd

+ → R is then

v(t, x) = sup
τ∈Tt,T

Et,x

[
e−r(τ−t)Ψ(Sτ )

]
, (15)

where Tt,T stands for the set of all the stopping times taking values on
[t,T ] and Et,x [·] is the expectation given all the information at time t
and assuming St = x.
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Conclusion

Machine Learning Monte Carlo algorithm for American
options

Approximating the price

We approximate the price of an American option with the price of a
Bermudan option on the same basket. Specifically, let N be the number
of time steps and ∆t = T/N the time increment. The discrete exercise
dates are tn = n∆t, as n = 0, 1, . . . ,N. If x represents the vector of the
underlying prices at the exercise date tn, then the value of the option is
given by

v (tn, x) = max
(
Ψ (x) ,Etn,x

[
e−r∆tv (tn+1,Stn+1 )

])
. (16)
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Conclusion

The set X

In order to compute the expectation in formula (16), we consider a set X
of P points whose coordinates represent certain possible values for the
underlyings:

X = {xp = (xp1 , . . . , x
p
d ) , p = 1, . . . ,P} ⊂ Rd . (17)

The sets X̃ p

First of all, we compute v (tn, x) only for x ∈ X . This is done by a Monte
Carlo simulation. In particular, for each xp ∈ X , we simulate a set X̃p

X̃ p = {x̃p,m = (x̃p,m1 , . . . , x̃p,md ) ,m = 1, . . . ,M} ⊂ Rd (18)

of M possible values for Stn+1 according to Stn = x.
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Conclusion

Exploiting GPR

Let ṽ (tn+1, x) be the GPR prediction of v (tn+1, x).
Then we have

v̂ (tn, x
p) = max

(
Ψ (xp) ,

e−r∆t

M

M∑
m=1

ṽ (tn+1, x̃
p,m)

)
. (19)
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Conclusion

The sets X

The choice of the set X is a sensitive question. Let Hp be the p-th point
of the Halton quasi-random sequence in Rd and Φ−1 the inverse
cumulative distribution of a standard normal distribution. Let us define
h (i , p, t) as follows:

h (i , p, t) = e(r− 1
2σ

2
i )t+σi

√
t
∑d

j=1 Σd,jΦ
−1(Hp

j ), (20)

In order to define X , we set

x1
i = s0,i , (21)

and
xpi = s0,i · h (i , p − 1,T ) . (22)
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Preprocessing: compute xp and x̃p,m

Step N − 1: shaping of ṽ
(
tN−1, ·

)
:

↪→ For p = 1, . . . , P compute

v̂
(
tN−1, x

p) = max

(
Ψ (xp) , e−r∆t

M

∑M
m=1 Ψ (x̃p,m)

)
↪→ Define the training set D =

{(
xp , v̂

(
tN−1, x

p)) , p = 1, . . . , P
}

↪→ Apply GPR on D to obtain ṽ
(
tN−1, ·

)
Step N − 2: shaping of ṽ

(
tN−2, ·

)
:

↪→ For p = 1, . . . , P compute

v̂
(
tN−2, x

p) = max

(
Ψ (xp) , e−r∆t

M

∑M
m=1 ṽ

(
tN−1, x̃

p,m))
↪→ Define the training set D =

{(
xp , v̂

(
tN−2, x

p)) , p = 1, . . . , P
}

↪→ Apply GPR on D to obtain ṽ
(
tN−2, ·

)

.

.

.
← Steps n = N − 3, . . . , 1

[
replace N − 2 with n and N − 1 with n + 1;

]
Step 0: computation of the price:

v̂ (0, s0) = max

Ψ
(
x1
)
,
e−r∆t

M

M∑
m=1

ṽ
(
tN−1, x̃

1,m
)
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Numerical Results

In this Section we report some numerical results in order to investigate
the effectiveness of the proposed Machine Learning algorithm for pricing
American options in the multi-dimensional Black-Scholes model.

We vary the dimension d , considering d = 2, 5, 10, 20, 40 and 100.

We consider the following parameters T = 1, Si = 100, K = 100,
r = 0.05, constant volatilities σi = 0.2, constant correlations ρij = 0.2
and N = 10 exercise dates.

Moreover, we consider P = 250, 500 or 1000 points and M = 103, 104 or
105 Monte Carlo simulations.
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Numerical Results

In particular, we consider the following payoff examples:

Arithmetic basket Put

Ψ(ST ) =

(
K − 1

d

d∑
i=1

S i
T

)
+

,

Geometric basket Put

Ψ(ST ) =

K −

(
d∏

i=1

S i
T

) 1
d


+

,

Call on the Maximum on d-assets

Ψ(ST ) =
(

max
i=1...d

S i
T − K

)
+
.
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Geometric basket Put

In this case, it is possible to reduce the problem of pricing in the
d-dimensional model to a one dimensional American Put option in
the Black-Scholes model with opportune parameters

A fully reliable benchmark can be computed by using the CRR
algorithm with 1000 steps.
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Geometric basket Put

P 250 500 1000

d M 103 104 105 103 104 105 103 104 105 Tree Bm

2 4.59
(8)

4.58
(27)

4.57
(236)

4.59
(24)

4.57
(115)

4.57
(808)

4.59
(53)

4.57
(515)

4.57
(3199)

4.62 4.62

5 3.46
(8)

3.43
(27)

3.43
(244)

3.45
(21)

3.42
(116)

3.42
(903)

3.44
(61)

3.41
(380)

3.41
(3025)

3.44 3.45

10 2.96
(8)

2.93
(28)

2.93
(256)

2.94
(17)

2.92
(103)

2.92
(1121)

2.93
(65)

2.90
(384)

2.90
(2982)

2.97

20 2.74
(9)

2.69
(52)

2.68
(276)

2.74
(24)

2.69
(104)

2.69
(870)

2.76
(59)

2.70
(388)

2.70
(3577)

2.70

40 2.60
(12)

2.50
(53)

2.50
(336)

2.63
(25)

2.53
(123)

2.53
(873)

2.67
(61)

2.57
(409)

2.57
(4681)

2.56

100 2.49
(14)

2.33
(80)

2.32
(507)

2.52
(25)

2.35
(151)

2.34
(1246)

2.58
(68)

2.40
(432)

2.40
(4288)

2.47

Table: Results for a Geometric basket Put option (and cp times in s).
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Geometric basket Put

The proposed method is accurate and stable and the computational
time can be very small.

The computer processing time increase little with the size of the
problem and this makes the method particularly effective when the
dimension of the problem is high

This is due to the fact that the dimension affects significantly only
the computational time of the Monte Carlo step while the GPR step
is only minimally distressed
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Arithmetic basket Put option

In this case we have no method to obtain a fully reliable benchmark.

However, for small values of d , a reference price can be obtained by
means of a multidimensional tree method

As in the case of the Geometric basket Put, the values do not
change much with respect to the number P of points and to the
number M of Monte Carlo simulations.
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Arithmetic basket Put

P 250 500 1000

d M 103 104 105 103 104 105 103 104 105 Tree

2 4.39
(8)

4.37
(27)

4.37
(235)

4.39
(16)

4.38
(100)

4.37
(881)

4.39
(46)

4.37
(446)

4.37
(3263)

4.42

5 3.15
(8)

3.13
(27)

3.12
(245)

3.12
(23)

3.10
(101)

3.10
(823)

3.12
(54)

3.09
(377)

3.09
(4491)

3.15

10 2.64
(9)

2.62
(28)

2.62
(260)

2.62
(16)

2.59
(105)

2.59
(921)

2.61
(47)

2.58
(385)

2.58
(3486)

20 2.34
(9)

2.28
(52)

2.28
(281)

2.37
(23)

2.32
(105)

2.32
(975)

2.44
(67)

2.38
(525)

2.38
(3548)

40 2.09
(10)

1.99
(54)

1.99
(341)

2.20
(29)

2.09
(126)

2.09
(966)

2.28
(80)

2.18
(410)

2.17
(3774)

100 1.96
(14)

1.80
(79)

1.80
(504)

2.03
(20)

1.85
(134)

1.84
(1457)

2.12
(59)

1.93
(439)

1.92
(4113)

Table: Results for a Arithmetic basket Put option (and cp times in s).

54 / 57



Gaussian Process Regression for Pricing Variable Annuities with Stochastic Volatility and Interest Rate

Conclusion

Call on the Maximum option

Similar to the case of the Arithmetic basket Put

In this case the payoff is an unbounded function
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Call on the Maximum option

P 250 500 1000

d M 103 104 105 103 104 105 103 104 105 Tree

2 16.82
(8)

16.86
(28)

16.87
(242)

16.81
(23)

16.85
(139)

16.86
(882)

16.81
(47)

16.85
(377)

16.86
(3443)

16.86

5 27.05
(8)

27.12
(28)

27.13
(242)

27.09
(21)

27.16
(141)

27.17
(906)

27.12
(45)

27.19
(385)

27.20
(3426)

27.20

10 35.73
(8)

35.82
(29)

35.82
(260)

35.12
(18)

35.19
(105)

35.19
(917)

35.07
(63)

35.16
(402)

35.17
(3201)

20 43.13
(9)

43.22
(51)

43.22
(276)

42.83
(18)

42.93
(105)

42.93
(939)

42.65
(64)

42.75
(398)

42.76
(3618)

40 54.92
(10)

55.00
(54)

55.01
(340)

51.04
(8)

51.13
(126)

51.15
(978)

50.66
(63)

50.68
(419)

50.70
(3691)

100 57.70
(14)

57.71
(78)

57.71
(503)

54.38
(28)

54.41
(157)

54.41
(1293)

59.60
(82)

59.68
(516)

59.69
(4838)

Table: Results for a Call on the Maximum option (and cp times in s).
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Conclusions

Numerical results show that the method is accurate and fast for
baskets including up to 100 assets.

Furthermore, the computation time is shortly growing with respect
to the dimension of the basket.

Moreover, we stress out that the algorithm is completely
parallelizable and therefore the computing time can be significantly
reduced.
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